• Title/Summary/Keyword: Feature modeling

Search Result 639, Processing Time 0.026 seconds

Measurement and Modeling of Job Stress of Electric Overhead Traveling Crane Operators

  • Krishna, Obilisetty B.;Maiti, Jhareswar;Ray, Pradip K.;Samanta, Biswajit;Mandal, Saptarshi;Sarkar, Sobhan
    • Safety and Health at Work
    • /
    • v.6 no.4
    • /
    • pp.279-288
    • /
    • 2015
  • Background: In this study, the measurement of job stress of electric overhead traveling crane operators and quantification of the effects of operator and workplace characteristics on job stress were assessed. Methods: Job stress was measured on five subscales: employee empowerment, role overload, role ambiguity, rule violation, and job hazard. The characteristics of the operators that were studied were age, experience, body weight, and body height. The workplace characteristics considered were hours of exposure, cabin type, cabin feature, and crane height. The proposed methodology included administration of a questionnaire survey to 76 electric overhead traveling crane operators followed by analysis using analysis of variance and a classification and regression tree. Results: The key findings were: (1) the five subscales can be used to measure job stress; (2) employee empowerment was the most significant factor followed by the role overload; (3) workplace characteristics contributed more towards job stress than operator's characteristics; and (4) of the workplace characteristics, crane height was the major contributor. Conclusion: The issues related to crane height and cabin feature can be fixed by providing engineering or foolproof solutions than relying on interventions related to the demographic factors.

Research on Community Knowledge Modeling of Readers Based on Interest Labels

  • Kai, Wang;Wei, Pan;Xingzhi, Chen
    • Journal of Information Processing Systems
    • /
    • v.19 no.1
    • /
    • pp.55-66
    • /
    • 2023
  • Community portraits can deeply explore the characteristics of community structures and describe the personalized knowledge needs of community users, which is of great practical significance for improving community recommendation services, as well as the accuracy of resource push. The current community portraits generally have the problems of weak perception of interest characteristics and low degree of integration of topic information. To resolve this problem, the reader community portrait method based on the thematic and timeliness characteristics of interest labels (UIT) is proposed. First, community opinion leaders are identified based on multi-feature calculations, and then the topic features of their texts are identified based on the LDA topic model. On this basis, a semantic mapping including "reader community-opinion leader-text content" was established. Second, the readers' interest similarity of the labels was dynamically updated, and two kinds of tag parameters were integrated, namely, the intensity of interest labels and the stability of interest labels. Finally, the similarity distance between the opinion leader and the topic of interest was calculated to obtain the dynamic interest set of the opinion leaders. Experimental analysis was conducted on real data from the Douban reading community. The experimental results show that the UIT has the highest average F value (0.551) compared to the state-of-the-art approaches, which indicates that the UIT has better performance in the smooth time dimension.

Adaptive Milling Process Modeling and Nerual Networks Applied to Tool Wear Monitoring (밀링공정의 적응모델링과 공구마모 검출을 위한 신경회로망의 적용)

  • Ko, Tae-Jo;Cho, Dong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.138-149
    • /
    • 1994
  • This paper introduces a new monitoring technique which utilizes an adaptive signal processing for feature generation, coupled with a multilayered merual network for pattern recognition. The cutting force signal in face milling operation was modeled by a low order discrete autoregressive model, shere parameters were estimated recursively at each sampling instant using a parameter adaptation algorithm based on an RLS(recursive least square) method with discounted measurements. The influences of the adaptation algorithm parameters as well as some considerations for modeling on the estimation results are discussed. The sensitivity of the extimated model parameters to the tool state(new and worn tool)is presented, and the application of a multilayered neural network to tool state monitoring using the previously generated features is also demonstrated with a high success rate. The methodology turned out to be quite suitable for in-process tool wear monitoring in the sense that the model parameters are effective as tool state features in milling operation and that the classifier successfully maps the sensors data to correct output decision.

  • PDF

A SEM-ANN Two-step Approach for Predicting Determinants of Cloud Service Use Intention (SEM-Artificial Neural Network 2단계 접근법에 의한 클라우드 스토리지 서비스 이용의도 영향요인에 관한 연구)

  • Guangbo Jiang;Sundong Kwon
    • Journal of Information Technology Applications and Management
    • /
    • v.30 no.6
    • /
    • pp.91-111
    • /
    • 2023
  • This study aims to identify the influencing factors of intention to use cloud services using the SEM-ANN two-step approach. In previous studies of SEM-ANN, SEM presented R2 and ANN presented MSE(mean squared error), so analysis performance could not be compared. In this study, R2 and MSE were calculated and presented by SEM and ANN, respectively. Then, analysis performance was compared and feature importances were compared by sensitivity analysis. As a result, the ANN default model improved R2 by 2.87 compared to the PLS model, showing a small Cohen's effect size. The ANN optimization model improved R2 by 7.86 compared to the PLS model, showing a medium Cohen effect size. In normalized feature importances, the order of importances was the same for PLS and ANN. The contribution of this study, which links structural equation modeling to artificial intelligence, is that it verified the effect of improving the explanatory power of the research model while maintaining the order of importance of independent variables.

Recovering the Elevation Map by Stereo Modeling of the Aerial Image Sequence (연속 항공영상의 스테레오 모델링에 의한 지형 복원)

  • 강민석;김준식;박래홍;이쾌희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.9
    • /
    • pp.64-75
    • /
    • 1993
  • This paper proposes a recovering technique of the elevation map by stereo modeling of the aerial image sequence which is transformed based on the aircraft situation. The area-based stereo matching method is simulated and the various parameters are experimentally chosen. In a depth extraction step, the depth is determined by solving the vector equation. The equation is suitable for stereo modeling of aerial images which do not satisfy the epipolar constraint. Also, the performance of the conventional feature-based matching scheme is compared. Finally, techniques analyzing the accuracy of the recovered elevation map (REM) are described. The analysis includes the error estimation for both height and contour lines, where the accuracy is based on the measurements of deviations from the estimates obtained manually. The experimental results show the efficiency of the proposed technique.

  • PDF

Modeling or rock slope stability and rockburst by the rock failure process analysis (RFPA) method

  • Tang, Chun'an;Tang, Shibin
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2011.09a
    • /
    • pp.89-97
    • /
    • 2011
  • Brittle failure of rock is a classical rock mechanics problem. Rock failure not only involves initiation and propagation of single crack, but also is a complex problem associated with initiation, propagation and coalescence of many cracks. As the most important feature of rock material properties is the heterogeneity, the Weibull statistical distribution is employed in the rock failure process analysis (RFPA) method to describe the heterogeneity in rock properties. In this paper, the applications of the RFPA method in geotechnical engineering and rockburst modeling are introduced with emphasis, which can provide some references for relevant researches.

  • PDF

Development of an Edge-Based Algorithm for Moving-Object Detection Using Background Modeling

  • Shin, Won-Yong;Kabir, M. Humayun;Hoque, M. Robiul;Yang, Sung-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.193-197
    • /
    • 2014
  • Edges are a robust feature for object detection. In this paper, we present an edge-based background modeling method for the detection of moving objects. The edges in the image frames were mapped using robust Canny edge detector. Two edge maps were created and combined to calculate the ultimate moving-edge map. By selecting all the edge pixels of the current frame above the defined threshold of the ultimate moving edges, a temporary background-edge map was created. If the frequencies of the temporary background edge pixels for several frames were above the threshold, then those edge pixels were treated as background edge pixels. We conducted a performance comparison with previous works. The existing edge-based moving-object detection algorithms pose some difficulty due to the changes in background motion, object shape, illumination variation, and noises. The result of the performance evaluation shows that the proposed algorithm can detect moving objects efficiently in real-world scenarios.

Texture Mapping and 3D Face Modeling using Two Views of 2D Face Images (2장의 2차원 얼굴영상을 이용한 텍스쳐 생성과 자동적인 3차원 얼굴모델링)

  • Weon, Sun-Hee;Kim, Gye-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.9
    • /
    • pp.705-709
    • /
    • 2009
  • In this paper, we propose 3d face modeling using two orthogonal views of 2D face images and automatically facial feature extraction. Th proposed technique consists of 2 parts, personalization of 3d face model and texture mapping.

Uncertainty Modeling and Robust Control for LCL Resonant Inductive Power Transfer System

  • Dai, Xin;Zou, Yang;Sun, Yue
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.814-828
    • /
    • 2013
  • The LCL resonant inductive power transfer (IPT) system is increasingly used because of its harmonic filtering capabilities, high efficiency at light load, and unity power factor feature. However, the modeling and controller design of this system become extremely difficult because of parameter uncertainty, high-order property, and switching nonlinear property. This paper proposes a frequency and load uncertainty modeling method for the LCL resonant IPT system. By using the linear fractional transformation method, we detach the uncertain part from the system model. A robust control structure with weighting functions is introduced, and a control method using structured singular values is used to enhance the system performance of perturbation rejection and reference tracking. Analysis of the controller performance is provided. The simulation and experimental results verify the robust control method and analysis results. The control method not only guarantees system stability but also improves performance under perturbation.

A combustion control modeling of coke oven by Swarm-based fuzzy system (스왐기반 퍼지시스템을 이용한 코크오븐 연소제어 모델링)

  • Ko, Ean-Tae;Hwang, Seok-Kyun;Lee, Jin-S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.493-495
    • /
    • 2005
  • This paper proposes a swarm-based fuzzy system modeling technique for coke oven combustion control diagnosis. The coke plant produces coke for the blast furnace plant in steel making process by charging coal into oven and supplying gas to carbonize it. A conventional mathematical model for coke oven combustion control has been used to control the amount of gas input, but it does not work well because of highly nonlinear feature of coke plant. To solve this problem, swarm-based fuzzy system modeling technique is suggested to construct a diagnosis model of coke oven combustion control. Based on the measured input-output data pairs, the fuzzy rules are generated and the parameters are tuned by the PSO(Particle Swarm Optimizer) to increase the accuracy of the fuzzy system is operated. This system computes the proper amount of gas input taking the operation conditions of coke oven into account, and compares the computed result with the supplied gas input.

  • PDF