• Title/Summary/Keyword: Feature matrix

Search Result 500, Processing Time 0.021 seconds

Disease Region Feature Extraction of Medical Image using Wavelet (Wavelet에 의한 의용영상의 병소부위 특징추출)

  • 이상복;이주신
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.3
    • /
    • pp.73-81
    • /
    • 1998
  • In this paper suggest for methods disease region feature extraction of medical image using wavelet. In the preprocessing, the shape informations of medical image are selected by performing the discrete wavelet transform(DWT) with four level coefficient matrix. In this approach, based on the characteristics of the coefficient matrix, 96 feature parameters are calculated as follows: Firstly. obtaining 32 feature parameters which have the characteristics of low frequency from the parameters according to the horizontal high frequency are calculated from the coefficient matrix of horizontal high frequency. In the third place, 16 vertical feature parameters are also calculated using the same kind of procedure with respect to the vertical high frequency. Finally, 32 feature parameters of diagonal high frequency are obtained from the coefficient matrix of diagonal high frequency. Consequently, 96 feature aprameters extracted. Using suggest algorithm in this paper will, implamentation can automatic recognition system, increasing efficiency of picture achieve communication system.

  • PDF

Speaker Adaptation using ICA-based Feature Transformation (ICA 기반의 특징변환을 이용한 화자적응)

  • Park ManSoo;Kim Hoi-Rin
    • MALSORI
    • /
    • no.43
    • /
    • pp.127-136
    • /
    • 2002
  • The speaker adaptation technique is generally used to reduce the speaker difference in speech recognition. In this work, we focus on the features fitted to a linear regression-based speaker adaptation. These are obtained by feature transformation based on independent component analysis (ICA), and the transformation matrix is learned from a speaker independent training data. When the amount of data is small, however, it is necessary to adjust the ICA-based transformation matrix estimated from a new speaker utterance. To cope with this problem, we propose a smoothing method: through a linear interpolation between the speaker-independent (SI) feature transformation matrix and the speaker-dependent (SD) feature transformation matrix. We observed that the proposed technique is effective to adaptation performance.

  • PDF

Melanoma Classification Algorithm using Gray-level Conversion Matrix Feature and Support Vector Machine (회색도 변환 행렬 특징과 SVM을 이용한 흑색종 분류 알고리즘)

  • Koo, Jung Mo;Na, Sung Dae;Cho, Jin-Ho;Kim, Myoung Nam
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.130-137
    • /
    • 2018
  • Recently, human life is getting longer due to change of living environment and development of medical technology, and silver medical technology has been in the limelight. Geriatric skin disease is difficult to detect early, and when it is missed, it becomes a malignant disease and is difficult to treatment. Melanoma is one of the most common diseases of geriatric skin disease and initially has a similar modality with the nevus. In order to overcome this problem, we attempted to perform a feature analysis in order to attempt automatic detection of melanoma-like lesions. In this paper, one is first order analysis using information of pixels in radiomic feature. The other is a gray-level co-occurrence matrix and a gray level run length matrix, which are feature extraction methods for converting image information into a matrix. The features were extracted through these analyses. And classification is implemented by SVM.

Spectral Feature Transformation for Compensation of Microphone Mismatches

  • Jeong, So-Young;Oh, Sang-Hoon;Lee, Soo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4E
    • /
    • pp.150-154
    • /
    • 2003
  • The distortion effects of microphones have been analyzed and compensated at mel-frequency feature domain. Unlike popular bias removal algorithms a linear transformation of mel-frequency spectrum is incorporated. Although a diagonal matrix transformation is sufficient for medium-quality microphones, a full-matrix transform is required for low-quality microphones with severe nonlinearity. Proposed compensation algorithms are tested with HTIMIT database, which resulted in about 5 percents improvements in recognition rate over conventional CMS algorithm.

A New Shape Adaptation Scheme to Affine Invariant Detector

  • Liu, Congxin;Yang, Jie;Zhou, Yue;Feng, Deying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1253-1272
    • /
    • 2010
  • In this paper, we propose a new affine shape adaptation scheme for the affine invariant feature detector, in which the convergence stability is still an opening problem. This paper examines the relation between the integration scale matrix of next iteration and the current second moment matrix and finds that the convergence stability of the method can be improved by adjusting the relation between the two matrices instead of keeping them always proportional as proposed by previous methods. By estimating and updating the shape of the integration kernel and differentiation kernel in each iteration based on the anisotropy of the current second moment matrix, we propose a coarse-to-fine affine shape adaptation scheme which is able to adjust the pace of convergence and enable the process to converge smoothly. The feature matching experiments demonstrate that the proposed approach obtains an improvement in convergence ratio and repeatability compared with the current schemes with relatively fixed integration kernel.

Vehicle Face Re-identification Based on Nonnegative Matrix Factorization with Time Difference Constraint

  • Ma, Na;Wen, Tingxin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2098-2114
    • /
    • 2021
  • Light intensity variation is one of the key factors which affect the accuracy of vehicle face re-identification, so in order to improve the robustness of vehicle face features to light intensity variation, a Nonnegative Matrix Factorization model with the constraint of image acquisition time difference is proposed. First, the original features vectors of all pairs of positive samples which are used for training are placed in two original feature matrices respectively, where the same columns of the two matrices represent the same vehicle; Then, the new features obtained after decomposition are divided into stable and variable features proportionally, where the constraints of intra-class similarity and inter-class difference are imposed on the stable feature, and the constraint of image acquisition time difference is imposed on the variable feature; At last, vehicle face matching is achieved through calculating the cosine distance of stable features. Experimental results show that the average False Reject Rate and the average False Accept Rate of the proposed algorithm can be reduced to 0.14 and 0.11 respectively on five different datasets, and even sometimes under the large difference of light intensities, the vehicle face image can be still recognized accurately, which verifies that the extracted features have good robustness to light variation.

Visual Servoing of an Eye-In-Hand Robot Based on Features (영상특징을 이용한 로봇의 시각적 구동 방법)

  • Jang, Won;Chung, Myung-Jin;Bien, Zeung-Nam
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.32-41
    • /
    • 1990
  • This paper proposes a method of using image features in serving a robot manipulator. Specifically, the con-cept 'feature' is first mathematically defined and then differential relationship between the robot motion and feature vector is derived in terms of Feature Jacobian Matrix and its generalized inverse. Also, by using more features than the number of DOFs of the robot, the visual servoing performance is shown to be improv-ed. Via various examples, the method of feature-based servoing of a robot proposed in this paper is proved to be effective for conducting object-oriented robotic tasks.

  • PDF

Feature Extraction of Disease Region in Stomach Images Based on DCT (DCT기반 위장영상 질환부위의 특징추출)

  • Ahn, Byeoung-Ju;Lee, Sang-Bock
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.3
    • /
    • pp.167-171
    • /
    • 2012
  • In this paper, we present an algorithm to extract features about disease region in digital stomach images. For feature extraction, DCT coefficients of gastrointestinal imaging matrix was obtained. DCT coefficent matrix is concentrated energy in low frequency region, we were extracted 128 feature parameters in low frequency region. Extracted feature parameters can using for differential compression of PACS and, can using for input parameter in CAD.

Pose Tracking of Moving Sensor using Monocular Camera and IMU Sensor

  • Jung, Sukwoo;Park, Seho;Lee, KyungTaek
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.3011-3024
    • /
    • 2021
  • Pose estimation of the sensor is important issue in many applications such as robotics, navigation, tracking, and Augmented Reality. This paper proposes visual-inertial integration system appropriate for dynamically moving condition of the sensor. The orientation estimated from Inertial Measurement Unit (IMU) sensor is used to calculate the essential matrix based on the intrinsic parameters of the camera. Using the epipolar geometry, the outliers of the feature point matching are eliminated in the image sequences. The pose of the sensor can be obtained from the feature point matching. The use of IMU sensor can help initially eliminate erroneous point matches in the image of dynamic scene. After the outliers are removed from the feature points, these selected feature points matching relations are used to calculate the precise fundamental matrix. Finally, with the feature point matching relation, the pose of the sensor is estimated. The proposed procedure was implemented and tested, comparing with the existing methods. Experimental results have shown the effectiveness of the technique proposed in this paper.

Chaotic Features for Traffic Video Classification

  • Wang, Yong;Hu, Shiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2833-2850
    • /
    • 2014
  • This paper proposes a novel framework for traffic video classification based on chaotic features. First, each pixel intensity series in the video is modeled as a time series. Second, the chaos theory is employed to generate chaotic features. Each video is then represented by a feature vector matrix. Third, the mean shift clustering algorithm is used to cluster the feature vectors. Finally, the earth mover's distance (EMD) is employed to obtain a distance matrix by comparing the similarity based on the segmentation results. The distance matrix is transformed into a matching matrix, which is evaluated in the classification task. Experimental results show good traffic video classification performance, with robustness to environmental conditions, such as occlusions and variable lighting.