• Title/Summary/Keyword: Feature image

Search Result 3,612, Processing Time 0.036 seconds

A Facial Feature Area Extraction Method for Improving Face Recognition Rate in Camera Image (일반 카메라 영상에서의 얼굴 인식률 향상을 위한 얼굴 특징 영역 추출 방법)

  • Kim, Seong-Hoon;Han, Gi-Tae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.5
    • /
    • pp.251-260
    • /
    • 2016
  • Face recognition is a technology to extract feature from a facial image, learn the features through various algorithms, and recognize a person by comparing the learned data with feature of a new facial image. Especially, in order to improve the rate of face recognition, face recognition requires various processing methods. In the training stage of face recognition, feature should be extracted from a facial image. As for the existing method of extracting facial feature, linear discriminant analysis (LDA) is being mainly used. The LDA method is to express a facial image with dots on the high-dimensional space, and extract facial feature to distinguish a person by analyzing the class information and the distribution of dots. As the position of a dot is determined by pixel values of a facial image on the high-dimensional space, if unnecessary areas or frequently changing areas are included on a facial image, incorrect facial feature could be extracted by LDA. Especially, if a camera image is used for face recognition, the size of a face could vary with the distance between the face and the camera, deteriorating the rate of face recognition. Thus, in order to solve this problem, this paper detected a facial area by using a camera, removed unnecessary areas using the facial feature area calculated via a Gabor filter, and normalized the size of the facial area. Facial feature were extracted through LDA using the normalized facial image and were learned through the artificial neural network for face recognition. As a result, it was possible to improve the rate of face recognition by approx. 13% compared to the existing face recognition method including unnecessary areas.

Selective Feature Extraction Method Between Markov Transition Probability and Co-occurrence Probability for Image Splicing Detection (접합 영상 검출을 위한 마르코프 천이 확률 및 동시발생 확률에 대한 선택적 특징 추출 방법)

  • Han, Jong-Goo;Eom, Il-Kyu;Moon, Yong-Ho;Ha, Seok-Wun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.833-839
    • /
    • 2016
  • In this paper, we propose a selective feature extraction algorithm between Markov transition probability and co-occurrence probability for an effective image splicing detection. The Features used in our method are composed of the difference values between DCT coefficients in the adjacent blocks and the value of Kullback-Leibler divergence(KLD) is calculated to evaluate the differences between the distribution of original image features and spliced image features. KLD value is an efficient measure for selecting Markov feature or Co-occurrence feature because KLD shows non-similarity of the two distributions. After training the extracted feature vectors using the SVM classifier, we determine whether the presence of the image splicing forgery. To verify our algorithm we used grid search and 6-folds cross-validation. Based on the experimental results it shows that the proposed method has good detection performance with a limited number of features compared to conventional methods.

Application of An Adaptive Self Organizing Feature Map to X-Ray Image Segmentation

  • Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1315-1318
    • /
    • 2003
  • In this paper, a neural network based approach using a self-organizing feature map is proposed for the segmentation of X ray images. A number of algorithms based on such approaches as histogram analysis, region growing, edge detection and pixel classification have been proposed for segmentation of general images. However, few approaches have been applied to X ray image segmentation because of blur of the X ray image and vagueness of its edge, which are inherent properties of X ray images. To this end, we develop a new model based on the neural network to detect objects in a given X ray image. The new model utilizes Mumford-Shah functional incorporating with a modified adaptive SOFM. Although Mumford-Shah model is an active contour model not based on the gradient of the image for finding edges in image, it has some limitation to accurately represent object images. To avoid this criticism, we utilize an adaptive self organizing feature map developed earlier by the authors.[1] It's learning rule is derived from Mumford-Shah energy function and the boundary of blurred and vague X ray image. The evolution of the neural network is shown to well segment and represent. To demonstrate the performance of the proposed method, segmentation of an industrial part is solved and the experimental results are discussed in detail.

  • PDF

Image Matching Based on Robust Feature Extraction for Remote Sensing Haze Images (위성 안개 영상을 위한 강인한 특징점 검출 기반의 영상 정합)

  • Kwon, Oh-Seol
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.272-275
    • /
    • 2016
  • This paper presents a method of single image dehazing and surface-based feature detection for remote sensing images. In the conventional dark channel prior (DCP) algorithm, the resulting transmission map invariably includes some block artifacts because of patch-based processing. This also causes image blur. Therefore, a refined transmission map based on a hidden Markov random field and expectation-maximization algorithm can reduce the block artifacts and also increase the image clarity. Also, the proposed algorithm enhances the accuracy of image matching surface-based features in an remote sensing image. Experimental results confirm that the proposed algorithm is superior to conventional algorithms in image haze removal. Moreover, the proposed algorithm is suitable for the problem of image matching based on feature extraction.

Enhancement of Object Detection using Haze Removal Approach in Single Image (단일 영상에서 안개 제거 방법을 이용한 객체 검출 알고리즘 개선)

  • Ahn, Hyochang;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.76-80
    • /
    • 2018
  • In recent years, with the development of automobile technology, smart system technology that assists safe driving has been developed. A camera is installed on the front and rear of the vehicle as well as on the left and right sides to detect and warn of collision risks and hazards. Beyond the technology of simple black-box recording via cameras, we are developing intelligent systems that combine various computer vision technologies. However, most related studies have been developed to optimize performance in laboratory-like environments that do not take environmental factors such as weather into account. In this paper, we propose a method to detect object by restoring visibility in image with degraded image due to weather factors such as fog. First, the image quality degradation such as fog is detected in a single image, and the image quality is improved by restoring using an intermediate value filter. Then, we used an adaptive feature extraction method that removes unnecessary elements such as noise from the improved image and uses it to recognize objects with only the necessary features. In the proposed method, it is shown that more feature points are extracted than the feature points of the region of interest in the improved image.

Image Feature-Based Real-Time RGB-D 3D SLAM with GPU Acceleration (GPU 가속화를 통한 이미지 특징점 기반 RGB-D 3차원 SLAM)

  • Lee, Donghwa;Kim, Hyongjin;Myung, Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.457-461
    • /
    • 2013
  • This paper proposes an image feature-based real-time RGB-D (Red-Green-Blue Depth) 3D SLAM (Simultaneous Localization and Mapping) system. RGB-D data from Kinect style sensors contain a 2D image and per-pixel depth information. 6-DOF (Degree-of-Freedom) visual odometry is obtained through the 3D-RANSAC (RANdom SAmple Consensus) algorithm with 2D image features and depth data. For speed up extraction of features, parallel computation is performed with GPU acceleration. After a feature manager detects a loop closure, a graph-based SLAM algorithm optimizes trajectory of the sensor and builds a 3D point cloud based map.

Attitude Estimation of an Aircraft using Image Data (영상데이타를 이용한 항공기 자세각 추정)

  • Park, Sung-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.44-50
    • /
    • 2011
  • This paper presents the algorithm for attitude determination of an aircraft using binary image. An image feature vector, which is invariant to translation, scale and rotation, is constructed to capture the functional relations between the feature vector and the corresponding aircraft attitude. An iterated least squares method is suggested for estimating the attitude of given aircraft using the constructed feature vector library. Simulation results show that the proposed algorithm yields good estimates of aircraft attitude in most viewing range, although a relatively large error occurs in some limited viewing direction.

Stroke Width-Based Contrast Feature for Document Image Binarization

  • Van, Le Thi Khue;Lee, Gueesang
    • Journal of Information Processing Systems
    • /
    • v.10 no.1
    • /
    • pp.55-68
    • /
    • 2014
  • Automatic segmentation of foreground text from the background in degraded document images is very much essential for the smooth reading of the document content and recognition tasks by machine. In this paper, we present a novel approach to the binarization of degraded document images. The proposed method uses a new local contrast feature extracted based on the stroke width of text. First, a pre-processing method is carried out for noise removal. Text boundary detection is then performed on the image constructed from the contrast feature. Then local estimation follows to extract text from the background. Finally, a refinement procedure is applied to the binarized image as a post-processing step to improve the quality of the final results. Experiments and comparisons of extracting text from degraded handwriting and machine-printed document image against some well-known binarization algorithms demonstrate the effectiveness of the proposed method.

Multiple Vehicle Detection and Tracking in Highway Traffic Surveillance Video Based on SIFT Feature Matching

  • Mu, Kenan;Hui, Fei;Zhao, Xiangmo
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.183-195
    • /
    • 2016
  • This paper presents a complete method for vehicle detection and tracking in a fixed setting based on computer vision. Vehicle detection is performed based on Scale Invariant Feature Transform (SIFT) feature matching. With SIFT feature detection and matching, the geometrical relations between the two images is estimated. Then, the previous image is aligned with the current image so that moving vehicles can be detected by analyzing the difference image of the two aligned images. Vehicle tracking is also performed based on SIFT feature matching. For the decreasing of time consumption and maintaining higher tracking accuracy, the detected candidate vehicle in the current image is matched with the vehicle sample in the tracking sample set, which contains all of the detected vehicles in previous images. Most remarkably, the management of vehicle entries and exits is realized based on SIFT feature matching with an efficient update mechanism of the tracking sample set. This entire method is proposed for highway traffic environment where there are no non-automotive vehicles or pedestrians, as these would interfere with the results.

Face Feature Extraction Method ThroughStereo Image's Matching Value (스테레오 영상의 정합값을 통한 얼굴특징 추출 방법)

  • Kim, Sang-Myung;Park, Chang-Han;Namkung, Jae-Chan
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.461-472
    • /
    • 2005
  • In this paper, we propose face feature extraction algorithm through stereo image's matching value. The proposed algorithm detected face region by change the RGB color space of skin color information to the YCbCr color space. Applying eye-template from extracted face region geometrical feature vector of feature about distance and lean, nose and mouth between eye extracted. And, Proposed method could do feature of eyes, nose and mouth through stereo image's matching as well as 2D feature information extract. In the experiment, the proposed algorithm shows the consistency rate of 73% in distance within about 1m and the consistency rate of 52%in distance since about 1m.

  • PDF