• 제목/요약/키워드: Feature extraction algorithm

검색결과 876건 처리시간 0.038초

Modified Local Directional Pattern 영상을 이용한 얼굴인식 (Face Recognition using Modified Local Directional Pattern Image)

  • 김동주;이상헌;손명규
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권3호
    • /
    • pp.205-208
    • /
    • 2013
  • 일반적으로 이진패턴 변환은 조명 변화에 강인한 특성을 가지므로, 얼굴인식 및 표정인식 분야에 널리 사용되고 있다. 이에, 본 논문에서는 기존의 LDP(Local Directional Pattern)의 텍스처 성분을 개선한 MLDP(Modified LDP) 변환 영상에 2D-PCA(Two-Dimensional Principal Component Analysis) 알고리즘을 결합한 조명변화에 강인한 얼굴인식 방법에 대하여 제안한다. 기존의 LBP(Local Binary Pattern)나 LDP와 같은 이진패턴 변환들이 히스토그램 특징 추출을 위해 주로 사용되는 것과는 다르게, 본 논문에서 제안하는 방법은 MLDP 영상을 2D-PCA 특징추출을 위해 직접 사용한다는 특성을 갖는다. 제안 방법의 성능평가는 PCA(Principal Component Analysis), 2D-PCA 및 가버변환 영상과 LBP를 결합한 알고리즘을 사용하여, 다양한 조명변화 환경에서 구축된 Yale B 및 CMU-PIE 데이터베이스를 이용하여 수행되었다. 실험 결과, MLDP 영상과 2D-PCA를 사용한 제안 방법이 가장 우수한 인식 성능을 보임을 확인하였다.

사용자 인증을 위한 딥러닝 기반 얼굴인식 기술 동향 (A Survey on Deep Learning based Face Recognition for User Authentication)

  • 문형진;김계희
    • 산업융합연구
    • /
    • 제17권3호
    • /
    • pp.23-29
    • /
    • 2019
  • 차이가 나는 물체를 구별하는 물체인식과 달리, 얼굴인식은 유사한 패턴을 가진 얼굴의 Identity를 구별한다. 이에 따라 LBP, HOG, Gabor과 같은 특징 추출 알고리즘이 딥러닝 기반으로 대체되고 있다. 딥 러닝 기술을 활용하여 머신러닝으로 얼굴을 식별할 수 있는 기술이 발전하면서 다양한 분야에서 얼굴인식 기술이 활용되고 있다. 특히, 금융 거래 외에도 사용자 식별이 필요한 다양한 오프라인 환경에서 활용되어 세밀하고 개인에 적합한 서비스가 제공될 수 있다. 얼굴 인식 기술은 스마트 미러와 같은 장치를 통해 손쉽게 사용자 인증을 하고, 식별이 된 사용자에게 서비스를 제공할 수 있는 기술로 발전할 수 있다. 본 논문에서는 사용자 인증의 다양한 기법 중에서 얼굴인식 기술에 대한 조사 및 파이썬으로 작성된 얼굴인식 사례 소스 분석과 얼굴인식 기술을 활용한 다양한 서비스의 가능성을 제시하고자 한다.

허밍 질의 기반 음악 검색 시스템의 유사도 계산 알고리즘 (A Similarity Computation Algorithm for Music Retrieval System Based on Query By Humming)

  • 오동열;오해석
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권4호
    • /
    • pp.137-145
    • /
    • 2006
  • 사람은 음악에서의 선율을 악보의 기보법과 같이 음표의 높이와 음표의 길이가 조합된 형태로서 기억하는 것이 아니라, 전반적인 음표간의 높낮이의 흐름과 음표 사이의 상대적인 지속시간으로 구성된 음조 곡선 형태로 기억한다. 이와 같은 선율의 기억 방식으로 인해 기존 음악 검색 시스템과 같이 건반을 이용한 주선율 입력이나 악보에 기보된 형태로 음악 검색의 질의를 이용하는 방법을 그대로 적용하기 어려운 점이 있다. 이에 본 논문에서는 사용자의 허밍을 질의로 사용하는 음악 검색 시스템에서의 고려 대상들과 기존에 연구된 허밍 질의 기반의 음악 검색 시스템을 살펴본다. 또한 사람이 선율을 기억하는 방식인 상대적인 음표 간 높낮이와 음표 지속 시간을 이용하여 음악 내에 특징 정보를 추출하고 이를 기반으로 허밍 질의와 단음과의 유사도 계산 알고리즘을 제안한다. 제안된 유사도 계산 알고리즘은 선율내의 음높이 차만 가지고 선율의 유사도를 비교하는 경우 발생할 수 있는 문제를 연속된 음간에 길이 차이를 이용하여 해결하였다.

  • PDF

가로 방향 에지를 이용한 자동차 타이어의 마모도 측정 및 편마모 여부 검출 (Wearing Degree and Uneven Wearing Detection of Tires Using Horizontal Edge Information)

  • 이태희;박은진;김기주;최두현
    • 한국산업정보학회논문지
    • /
    • 제23권6호
    • /
    • pp.21-27
    • /
    • 2018
  • 본 논문에서는 수평 방향의 경계선 정보를 이용한 마모 정도 및 편마모 검출 알고리즘을 제안한다. 입력 이미지의 노이즈는 양방향 필터로 제거한 다음 제안된 마스크를 사용하여 필터링된 이미지에서 경계선이 추출된다. 타이어가 마모됨에 따라, 타이어 숄더 또는 타이어 바퀴의 바닥에 팬 홈이 수직 홈보다 더 많이 바뀐다. 그러므로 타이어 숄더 또는 타이어 홈의 모서리는 수직 홈의 모서리보다 타이어 장착에 대한 정보가 더 많다. 제안 된 마스크는 이 특징을 반영하여 수평 모서리 추출에 사용된다. 경계선 추출 후, 경계선 이미지는 두 가지 레벨 시스템으로 표현된다. 이진화 이미지의 경계선 화소는 착용도 및 불균일한 착용을 결정하는 데 사용된다. 이 제안 된 방법은 다른 장비 없이 쉽게 사용할 수 있다. 제안 된 방법은 실제 차량을 사용하여 수행되었으며, 실험 결과는 착용도 및 착용 불균일성을 검출하는데 있어 제안 된 방법의 우수한 성능을 보여준다.

Simultaneous monitoring of motion ECG of two subjects using Bluetooth Piconet and baseline drift

  • Dave, Tejal;Pandya, Utpal
    • Biomedical Engineering Letters
    • /
    • 제8권4호
    • /
    • pp.365-371
    • /
    • 2018
  • Uninterrupted monitoring of multiple subjects is required for mass causality events, in hospital environment or for sports by medical technicians or physicians. Movement of subjects under monitoring requires such system to be wireless, sometimes demands multiple transmitters and a receiver as a base station and monitored parameter must not be corrupted by any noise before further diagnosis. A Bluetooth Piconet network is visualized, where each subject carries a Bluetooth transmitter module that acquires vital sign continuously and relays to Bluetooth enabled device where, further signal processing is done. In this paper, a wireless network is realized to capture ECG of two subjects performing different activities like cycling, jogging, staircase climbing at 100 Hz frequency using prototyped Bluetooth module. The paper demonstrates removal of baseline drift using Fast Fourier Transform and Inverse Fast Fourier Transform and removal of high frequency noise using moving average and S-Golay algorithm. Experimental results highlight the efficacy of the proposed work to monitor any vital sign parameters of multiple subjects simultaneously. The importance of removing baseline drift before high frequency noise removal is shown using experimental results. It is possible to use Bluetooth Piconet frame work to capture ECG simultaneously for more than two subjects. For the applications where there will be larger body movement, baseline drift removal is a major concern and hence along with wireless transmission issues, baseline drift removal before high frequency noise removal is necessary for further feature extraction.

골격을 이용한 문자 인식을 위한 지역경계 연산 (Regional Boundary Operation for Character Recognition Using Skeleton)

  • 유석원
    • 문화기술의 융합
    • /
    • 제4권4호
    • /
    • pp.361-366
    • /
    • 2018
  • 학습 데이터를 구성하는 각각의 문자들에 대해 서로 다른 글자체들을 픽셀 단위로 더해서 MASK를 만들고, 해당 MASK에 속하는 픽셀값들을 세 영역으로 나눈다. 실험 데이터를 골격 형태로 수정하고, 지역 경계 연산을 사용하여 수정된 실험 데이터의 배경 중에서 문자의 골격에 인접한 배경 영역을 구분하는 경계를 만든다. 수정된 실험 데이터와 MASK들 간의 불일치 정도를 계산해서 최소값을 가지는 MASK를 찾는다. 이 MASK가 해당 실험 데이터에 대해 최종적으로 인식된 학습 데이터 문자로 선택된다. 문자의 골격과 지역 경계 연산을 사용하는 인식법은 주어진 학습 데이터에 새로운 글자체를 추가해서 학습 데이터를 쉽게 확장할 수 있으며, 구현하기가 간단하면서도 높은 문자 인식률을 얻을 수 있다.

복잡한 환경에서 MTCNN 모델 기반 얼굴 검출 알고리즘 개선 연구 (Research and Optimization of Face Detection Algorithm Based on MTCNN Model in Complex Environment)

  • 부옥매;김민영;장종욱
    • 한국정보통신학회논문지
    • /
    • 제24권1호
    • /
    • pp.50-56
    • /
    • 2020
  • 현재 심층 신경망 이론 및 응용 연구의 빠른 개발로 얼굴 인식의 효과가 향상되고 있다. 그러나 심층 신경망 계산의 복잡성과 탐지 환경의 복잡성으로 인해 얼굴을 빠르고 정확하게 감지하는 방법이 주요 문제가 된다. 이 논문은 FDDB, LFW 및 FaceScrub 공개 데이터 세트를 훈련 표본을 사용하는 단순한 MTCNN 모델을 기반으로 둔다. MTCNN 모델을 분류하고 소개하면서 학습 훈련 속도를 높이고 성능을 향상하는 방법을 모색합니다. 본 논문에서는 다이내믹 이미지 피라미드 기술을 이용하여 기존 이미지 Pyramid 기술을 대체하여 샘플을 분할하고 MTCNN 모델의 OHEM을 훈련에서 제거하여 훈련 속도를 향상시켰다.

동특성 앙상블 학습 기반 구조물 진단 모니터링 분산처리 시스템 (Decentralized Structural Diagnosis and Monitoring System for Ensemble Learning on Dynamic Characteristics)

  • 신윤수;민경원
    • 한국전산구조공학회논문집
    • /
    • 제34권4호
    • /
    • pp.183-189
    • /
    • 2021
  • 구조물에 장기적으로 발생하는 노후화를 정량적으로 파악하기 위해 상시진동 데이터를 활용한 일반화된 모니터링 시스템에 관한 연구가 세계적으로 활발히 수행중이다. 본 연구에서는 구조물에서 장기적으로 취득되는 동특성을 앙상블 학습에 활용하여 구조물의 이상을 감지하기 위한 보급형 엣지 컴퓨팅 시스템을 구축하였다. 시스템의 하드웨어는 라즈베리파이와 보급형 가속도계, 기울기센서, GPS RTK 모듈, 로라 모듈로 구성됐다. 실험실 규모의 구조물 모형 진동실험을 통해 동특성을 활용한 앙상블 학습의 구조물 이상감지를 검증하였으며, 실험을 기반으로 한 실시간 동특성 추출 분산처리 알고리즘을 라즈베리파이에 탑재하였다. 구축된 시스템을 하우징하고 포항시 행정복지센터에 설치하여 데이터를 취득함으로써 개발된 시스템의 현장 적용성을 검증하였다.

탁구 로봇을 위한 빠른 자세 분류 시스템 개발 (Development of Fast Posture Classification System for Table Tennis Robot)

  • 진성호;권영우;김윤정;박미영;안재훈;강호선;최지욱;이인호
    • 로봇학회논문지
    • /
    • 제17권4호
    • /
    • pp.463-476
    • /
    • 2022
  • In this paper, we propose a table tennis posture classification system using a cooperative robot to develop a table tennis robot that can be trained like a real game. The most ideal table tennis robot would be a robot with a high joint driving speed and a high degree of freedom. Therefore, in this paper, we intend to use a cooperative robot with sufficient degrees of freedom to develop a robot that can be trained like a real game. However, cooperative robots have the disadvantage of slow joint driving speed. These shortcomings are expected to be overcome through quick recognition. Therefore, in this paper, we try to quickly classify the opponent's posture to overcome the slow joint driving speed. To this end, learning about dynamic postures was conducted using image data as input, and finally, three classification models were created and comparative experiments and evaluations were performed on the designated dynamic postures. In conclusion, comparative experimental data demonstrate the highest classification accuracy and fastest classification speed in classification models using MLP (Multi-Layer Perceptron), and thus demonstrate the validity of the proposed algorithm.

LSTM based Supply Imbalance Detection and Identification in Loaded Three Phase Induction Motors

  • Majid, Hussain;Fayaz Ahmed, Memon;Umair, Saeed;Babar, Rustum;Kelash, Kanwar;Abdul Rafay, Khatri
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.147-152
    • /
    • 2023
  • Mostly in motor fault detection the instantaneous values 3 axis vibration and 3phase current in time domain are acquired and converted to frequency domain. Vibrations are more useful in diagnosing the mechanical faults and motor current has remained more useful in electrical fault diagnosis. With having some experience and knowledge on the behavior of acquired data the electrical and mechanical faults are diagnosed through signal processing techniques or combine machine learning and signal processing techniques. In this paper, a single-layer LSTM based condition monitoring system is proposed in which the instantaneous values of three phased motor current are firstly acquired in simulated motor in in health and supply imbalance conditions in each of three stator currents. The acquired three phase current in time domain is then used to train a LSTM network, which can identify the type of fault in electrical supply of motor and phase in which the fault has occurred. Experimental results shows that the proposed single layer LSTM algorithm can identify the electrical supply faults and phase of fault with an average accuracy of 88% based on the three phase stator current as raw data without any processing or feature extraction.