• 제목/요약/키워드: Feature dimension reduction

검색결과 106건 처리시간 0.021초

프랙탈 차원을 이용한 모음인식 (Vowel Recognition Using the Fractal Dimensioin)

  • 최철영
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 제11회 음성통신 및 신호처리 워크샵 논문집 (SCAS 11권 1호)
    • /
    • pp.364-367
    • /
    • 1994
  • In this paper, we carried out some experiments on the Korean vowel recognition using the fractal dimension of the speech signals. We chose the Mincowski-Bouligand dimensioni as the fractal dimension, and computed it using the morphological covering method. For our experiments, we used both the fractal dimension and the LPC cepstrum which is conventionally known to be one of the best parameters for speech recognition, and examined the usefulness of the fractal dimension. From the vowel recognition experiments under various consonant contexts, we achieved the vowel recognition error rats of 5.6% and 3.2% for the case with only LPC cepstrum and that with both LPC cepstrum and the fractal dimension, respectively. The results indicate that the incorporation of the fractal dimension with LPC cepstrum gies more than 40% reduction in recognition errors, and indicates that the fractal dimension is a useful feature parameter for speech recognition.

  • PDF

PCA기반 검색 축소 기법을 이용한 SURF 매칭 속도 개선 (Speed Improvement of SURF Matching Algorithm Using Reduction of Searching Range Based on PCA)

  • 김원규;강동중
    • 한국멀티미디어학회논문지
    • /
    • 제16권7호
    • /
    • pp.820-828
    • /
    • 2013
  • 영상에서 임의의 점에 대한 고유한 특징을 계산하는 알고리즘은 파노라마 영상의 제작, 스테레오 영상의 획득, 물체 인식, 이미지 분석 등에 다양하게 사용되는 중요한 요소이다. 일반적으로 어떤 점의 특징은 스칼라 형태가 아닌 벡터형태로 나타나게 되는데, 무수히 많은 특징 점들을 서로 비교하는 작업은 매우 많은 계산량을 요구한다. 본 연구에서는 영상의 특징점 계산에 SURF(speeded up robust features)를 이용하였고, 이미지로부터 추출된 특징을 PCA(principal component analysis)기법을 이용하여 벡터의 차원을 축소하여 연결리스트 자료구조에 정렬한 다음 특징을 비교하는 기법을 제안한다. 제안된 특징의 비교 방법을 적용할 경우 기존 방법의 매칭 정확도는 유지한 상태에서 계산시간을 줄일 수 있는 것을 실험을 통하여 확인하였다.

독립변수의 차원감소에 의한 Polynomial Adaline의 성능개선 (Performance Improvement of Polynomial Adaline by Using Dimension Reduction of Independent Variables)

  • 조용현
    • 한국산업융합학회 논문집
    • /
    • 제5권1호
    • /
    • pp.33-38
    • /
    • 2002
  • This paper proposes an efficient method for improving the performance of polynomial adaline using the dimension reduction of independent variables. The adaptive principal component analysis is applied for reducing the dimension by extracting efficiently the features of the given independent variables. It can be solved the problems due to high dimensional input data in the polynomial adaline that the principal component analysis converts input data into set of statistically independent features. The proposed polynomial adaline has been applied to classify the patterns. The simulation results shows that the proposed polynomial adaline has better performances of the classification for test patterns, in comparison with those using the conventional polynomial adaline. Also, it is affected less by the scope of the smoothing factor.

  • PDF

PCA 저차원 축소에 따른 조명 있는 얼굴의 인식률 변화 (A variation of face recognition rate according to the reduction of low dimension in PCA method)

  • 송영준;김동우;김영길;김남
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2006년도 추계 종합학술대회 논문집
    • /
    • pp.533-535
    • /
    • 2006
  • 본 논문은 얼굴 인식에서 널리 사용되고 있는 PCA 기법에서 1, 2, 3차의 저차원의 특징 벡터를 배제하여 조명있는 얼굴의 인식률 변화를 실험하였다. 보편적으로 저차원 3개를 배제할 경우 조명에 강건한 얼굴 인식을 보인다고 하나, 저차원의 어느 부분이 조명에 크게 관여가되는지는 알려지지 않고 있다. 이에 본 연구에서는 1차, 2차, 3차 및 이를 조합하여 저차원의 조명에 대한 영향을 분석하였다.

  • PDF

주파수 부대역의 켑스트럼 해상도 최적화에 의한 특징추출 (Feature Extraction by Optimizing the Cepstral Resolution of Frequency Sub-bands)

  • 지상문;조훈영;오영환
    • 한국음향학회지
    • /
    • 제22권1호
    • /
    • pp.35-41
    • /
    • 2003
  • 일반적인 음성인식 방법에서는 주파수 전대역에서 추출한 특징벡터를 사용하므로, 각 주파수 부대역은 최종인식 결과에 동등하게 기여한다. 본 논문에서는 주파수 부대역별로 독립적인 특징을 추출하고, 음성인식에 효과적이 되도록 부대역의 켑스트럼 해상도를 조절하는 방법을 제안한다. 주파수 부대역별로 독립적인 특징을 추출하는 멀티밴드 음성인식접근을 사용하여 부대역 특징벡터의 차원을 변화시킨다. 최적의 벡터 차원 조합을 찾기 위하여 음성인식률과 군집화 품질을 사용한다. TIDIGITS 연결 숫자음을 사용한 실험결과에서, 제안한 방법은 전대역 특징추출에 비해 적은 계산량으로도 숫자열 인식률은 99.12%, 백분율 정확도 (percent correct)는 99.775%, 백분율 정밀도 (percent accuracy)는 99.705%를 얻었으며, 이는 전대역 특징벡터에 비해 상대적 오류율을 각각 38%, 32%, 37% 감소시킨 결과이다.

필기체 숫자 데이터 차원 감소를 위한 선분 특징 분석 알고리즘 (Line-Segment Feature Analysis Algorithm for Handwritten-Digits Data Reduction)

  • 김창민;이우범
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권4호
    • /
    • pp.125-132
    • /
    • 2021
  • 인공신경망의 계층의 깊이가 깊어지고 입력으로 사용되는 데이터 차원이 증가됨에 신경망의 학습 및 인식에 있어서 많은 연산을 고속으로 요구하는 고연산의 문제가 발생한다. 따라서 본 논문에서는 신경망 입력 데이터의 차원을 감소시키기 위한 데이터 차원 감소 방법을 제안한다. 제안하는 선분 특징 분석(Line-segment Feature Analysis; LFA) 알고리즘은 한 영상 내에 존재하는 객체의 선분(Line-segment) 특징을 분석하기 위하여 메디안 필터(median filter)를 사용한 기울기 기반의 윤곽선 검출 알고리즘을 적용한다. 추출된 윤곽 영상은 [0, 1, 2, 4, 8, 16, 32, 64, 128]의 계수 값으로 구성된 3×3 또는 5×5 크기의 검출 필터를 이용하여 8가지 선분의 종류에 상응하는 고유값을 계산한다. 각각의 검출필터로 계산된 고유값으로부터 동일한 반응값을 누적하여 두 개의 1차원의 256 크기의 데이터를 생성하고 두 가지 데이터 요소를 합산하여 LFA256 데이터를, 두 데이터를 합병하여 512 크기의 LAF512 데이터를 생성한다. 제안한 LFA 알고리즘의 성능평가는 필기체 숫자 인식을 위한 데이터 차원 감소를 목적으로 PCA 기법과 AlexNet 모델을 이용하여 비교 실험한 결과 LFA256과 LFA512가 각각 98.7%와 99%의 인식 성능을 보였다.

주파수 영역에서 에너지 확률을 이용한 얼굴 특징 추출 (Facial Feature Extraction Using Energy Probability in Frequency Domain)

  • 최진;정윤수;김기현;유장희
    • 대한전자공학회논문지SP
    • /
    • 제43권4호
    • /
    • pp.87-95
    • /
    • 2006
  • 본 논문에서는 얼굴 영상의 에너지 분포 특성을 이용한 새로운 특정추출 방법을 제안한다. 제안된 방법은 얼굴 영상의 에너지 확률과 에너지 랩을 이용해서 데이터 차원이 축소된 유효정보의 추출 및 유효정보의 LDA 해석에 기반을 둔다. 일반적으로, 얼굴 영상은 고유한 에너지 분포 특성을 가지고 있다. 그러나 기존의 많은 DCT 기반 방법들은 이러한 얼굴 영상의 특성을 효과적으로 이용하지 못하는 단점이 있다. 제안된 방법은 이러한 기존 방법의 단점을 개선하기 위해 다음의 3단계 방법을 사용한다. 먼저, DCT 도메인에서 얼굴의 에너지 확률 개념을 정의하고, 이러한 에너지 확률로부터 얼굴의 에너지 맵을 생성한다. 마지막으로, 에너지 확률 지도에 위치한 주파수 계수들에 대한 LDA 적용 및 해석을 통하여 특정 벡터 추출 및 인식을 수행한다. 제안된 방법은 ETRI 데이터베이스에서 96.8%, ORL 데이터베이스에서 100%의 인식률을 보인다. 실험을 통하여 인식 성능의 개선뿐만 아니라, 특정 벡터의 차원 축소에도 효과가 있음을 알 수 있다.

A Novel Approach of Feature Extraction for Analog Circuit Fault Diagnosis Based on WPD-LLE-CSA

  • Wang, Yuehai;Ma, Yuying;Cui, Shiming;Yan, Yongzheng
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2485-2492
    • /
    • 2018
  • The rapid development of large-scale integrated circuits has brought great challenges to the circuit testing and diagnosis, and due to the lack of exact fault models, inaccurate analog components tolerance, and some nonlinear factors, the analog circuit fault diagnosis is still regarded as an extremely difficult problem. To cope with the problem that it's difficult to extract fault features effectively from masses of original data of the nonlinear continuous analog circuit output signal, a novel approach of feature extraction and dimension reduction for analog circuit fault diagnosis based on wavelet packet decomposition, local linear embedding algorithm, and clone selection algorithm (WPD-LLE-CSA) is proposed. The proposed method can identify faulty components in complicated analog circuits with a high accuracy above 99%. Compared with the existing feature extraction methods, the proposed method can significantly reduce the quantity of features with less time spent under the premise of maintaining a high level of diagnosing rate, and also the ratio of dimensionality reduction was discussed. Several groups of experiments are conducted to demonstrate the efficiency of the proposed method.

학습 성능 향상을 위한 차원 축소 기법 기반 재난 시뮬레이션 강화학습 환경 구성 및 활용 (The Design and Practice of Disaster Response RL Environment Using Dimension Reduction Method for Training Performance Enhancement)

  • 여상호;이승준;오상윤
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권7호
    • /
    • pp.263-270
    • /
    • 2021
  • 강화학습은 학습을 통해 최적의 행동정책을 탐색하는 기법으로써, 재난 상황에서 효과적인 인명 구조 및 재난 대응 문제 해결을 위해 많이 활용되고 있다. 그러나, 기존 재난 대응을 위한 강화학습 기법은 상대적으로 단순한 그리드, 그래프와 같은 환경 혹은 자체 개발한 강화학습 환경을 통해 평가를 수행함에 따라 그 실용성이 충분히 검증되지 않았다. 본 논문에서는 강화학습 기법을 실세계 환경에서 사용하기 위해 기존 개발된 재난 시뮬레이션 환경의 복잡한 프로퍼티를 활용하는 강화학습 환경 구성과 활용 결과를 제시하고자 한다. 본 제안 강화학습 환경의 구성을 위하여 재난 시뮬레이션과 강화학습 에이전트 간 강화학습 커뮤니케이션 채널 및 인터페이스를 구축하였으며, 시뮬레이션 환경이 제공하는 고차원의 프로퍼티 정보의 활용을 위해 비-이미지 피쳐 벡터(non-image feature vector)에 이미지 변환방식을 적용하였다. 실험을 통해 본 제안 방식이 건물 화재 피해도를 기준으로 한 평가에서 기존 방식 대비 가장 낮은 건물 화재 피해를 기록한 것을 확인하였다.

A GENETIC ALGORITHM BASED FEATURE EXTRACTION TECHNIQUE FOR HYPERSPECTRAL IMAGERY

  • Ryu Byong Tae;Kim Choon-Woo;Kim Hakil;Lee Kyu Sung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.209-212
    • /
    • 2005
  • Hyperspectral data consists of more than 200 spectral bands that are highly correlated. In order to utilize hyperspectral data for classification, dimensional reduction or feature extraction is desired. By applying feature extraction, computational complexity of classification can be reduced and classification accuracy may be improved. In this paper, a genetic algorithm based feature extraction technique is proposed. Measure from discriminant analysis is utilized as optimization criterion. A subset of spectral bands is selected by genetic algorithm. Dimension of feature space is further reduced by linear transformation. Feasibility of the proposed technique is evaluated with AVIRIS data.

  • PDF