• 제목/요약/키워드: Feature dimension reduction

검색결과 106건 처리시간 0.021초

점진적 모델에 기반한 다채널 시계열 데이터 EEG의 특징 분석 (Feature Analysis of Multi-Channel Time Series EEG Based on Incremental Model)

  • 김선희;양형정;;정종문
    • 정보처리학회논문지B
    • /
    • 제16B권1호
    • /
    • pp.63-70
    • /
    • 2009
  • BCI 기술은 생체신호인 뇌파를 수집하여 신호처리를 거친 후 실질적인 기기제어 및 통신 시스템 등을 제어하는 시스템 관련 기술이다. BCI 시스템 구현을 위해서는 뇌파의 특성을 실시간으로 분석하여 학습 시키고 학습된 뇌파의 특성을 적용하는 단계가 요구된다. 본 논문에서는 EEG 데이터를 효율적으로 분석하기 위해 점진적으로 갱신되는 주성분 분석을 이용하여 왼손/오른손 동작에 영향을 미치는 EEG 신호의 특징을 찾고, 이를 반영하여 데이터의 차원을 축소한다. 입력 자료의 특징을 충분히 포함하면서 낮은 차원을 가지는 데이터를 이용한다면 분류를 위한 계산량을 감소시킬 수 있을 뿐만 아니라 불필요한 특징을 제거함으로써 분류 성능을 향상 시킬 수 있다. 본 논문에서는 점진적으로 갱신되는 주성분 분석을 이용하여 데이터의 차원을 축소하고 이에 대한 효율성을 검증하기 위해 K-NN분류기를 이용하여 분류 정확도 측정을 수행하였다. 그 결과 주성분 분석을 이용하여 특징을 추출하고 분류율을 측정한 경우보다 평균 5% 높은 분류 정확율을 보였다.

An Ensemble Classifier using Two Dimensional LDA

  • Park, Cheong-Hee
    • 한국멀티미디어학회논문지
    • /
    • 제13권6호
    • /
    • pp.817-824
    • /
    • 2010
  • Linear Discriminant Analysis (LDA) has been successfully applied for dimension reduction in face recognition. However, LDA requires the transformation of a face image to a one-dimensional vector and this process can cause the correlation information among neighboring pixels to be disregarded. On the other hand, 2D-LDA uses 2D images directly without a transformation process and it has been shown to be superior to the traditional LDA. Nevertheless, there are some problems in 2D-LDA. First, it is difficult to determine the optimal number of feature vectors in a reduced dimensional space. Second, the size of rectangular windows used in 2D-LDA makes strong impacts on classification accuracies but there is no reliable way to determine an optimal window size. In this paper, we propose a new algorithm to overcome those problems in 2D-LDA. We adopt an ensemble approach which combines several classifiers obtained by utilizing various window sizes. And a practical method to determine the number of feature vectors is also presented. Experimental results demonstrate that the proposed method can overcome the difficulties with choosing an optimal window size and the number of feature vectors.

Novel Intent based Dimension Reduction and Visual Features Semi-Supervised Learning for Automatic Visual Media Retrieval

  • kunisetti, Subramanyam;Ravichandran, Suban
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.230-240
    • /
    • 2022
  • Sharing of online videos via internet is an emerging and important concept in different types of applications like surveillance and video mobile search in different web related applications. So there is need to manage personalized web video retrieval system necessary to explore relevant videos and it helps to peoples who are searching for efficient video relates to specific big data content. To evaluate this process, attributes/features with reduction of dimensionality are computed from videos to explore discriminative aspects of scene in video based on shape, histogram, and texture, annotation of object, co-ordination, color and contour data. Dimensionality reduction is mainly depends on extraction of feature and selection of feature in multi labeled data retrieval from multimedia related data. Many of the researchers are implemented different techniques/approaches to reduce dimensionality based on visual features of video data. But all the techniques have disadvantages and advantages in reduction of dimensionality with advanced features in video retrieval. In this research, we present a Novel Intent based Dimension Reduction Semi-Supervised Learning Approach (NIDRSLA) that examine the reduction of dimensionality with explore exact and fast video retrieval based on different visual features. For dimensionality reduction, NIDRSLA learns the matrix of projection by increasing the dependence between enlarged data and projected space features. Proposed approach also addressed the aforementioned issue (i.e. Segmentation of video with frame selection using low level features and high level features) with efficient object annotation for video representation. Experiments performed on synthetic data set, it demonstrate the efficiency of proposed approach with traditional state-of-the-art video retrieval methodologies.

PCA를 적용한 결함 심각도 기반 차원 축소 모델 (Defect Severity-based Dimension Reduction Model using PCA)

  • 권기태;이나영
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제15권1호
    • /
    • pp.79-86
    • /
    • 2019
  • 데이터의 차원축소는 요소들의 공통성을 파악해 영향력 있는 중요한 특징 요소를 추출하여 간소화함으로써 복잡함을 줄이고 다중 공선성 문제를 해결한다. 그리고 중복 및 노이즈 검출을 함으로써 불필요함을 줄인다. 이에 본 논문에서는 PCA(Prinicipal Component Analysis)을 적용한 결함 심각도 기반 차원 축소 모델을 제안한다. 제안된 모델은 결함 심각도가 있는 NASA 데이터 세트인 PC4에 적용하여 결함 심각도에 영향을 주는 속성의 차원수를 검증한다. 그 다음 데이터의 차원을 축소한 후 비교 분석한다. 실험결과, PC4의 적합한 차원수는 2~3개였고 그룹화를 통해 차원 축소가 가능한 것을 보였다.

Face recognition by PLS

  • Baek, Jang-Sun
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 추계 학술발표회 논문집
    • /
    • pp.69-72
    • /
    • 2003
  • The paper considers partial least squares (PLS) as a new dimension reduction technique for the feature vector to overcome the small sample size problem in face recognition. Principal component analysis (PCA), a conventional dimension reduction method, selects the components with maximum variability, irrespective of the class information. So PCA does not necessarily extract features that are important for the discrimination of classes. PLS, on the other hand, constructs the components so that the correlation between the class variable and themselves is maximized. Therefore PLS components are more predictive than PCA components in classification. The experimental results on Manchester and ORL databases show that PLS is to be preferred over PCA when classification is the goal and dimension reduction is needed.

  • PDF

Kriging 보간법을 사용한 개선된 차원감소법 (Improving Dimension Reduction Method Using Kriging Interpolation)

  • 최주호;최창현
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.135-140
    • /
    • 2007
  • In this paper, an Improved Dimension Reduction(IDR) method is proposed for uncertainty quantification that employes Kriging interpolation technic. It has been acknowledged that the DR method is accurate and efficient for assessing statistical moments and reliability due to the sensitivity free feature. However, the DR method has a number of drawbacks such as instability and inaccuracy for problems with increased nonlineality. In this paper, improved DR is implanted by three steps. First, the Kriging interpolation method is used to accurately approximate the responses. Second, 2N+1 and 4N+1 ADOEs are proposed to maintain high accuracy of the method for UQ analysis. Third, numerical integration scheme is used with accurate but free response values at any set of integration points of the surrogated model.

  • PDF

새로운 독립 요소 해석 방법론에 의한 얼굴 인식 (Face Recognition Using A New Methodology For Independent Component Analysis)

  • 류재흥;고재흥
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.305-309
    • /
    • 2000
  • In this paper, we presents a new methodology for face recognition after analysing conventional ICA(Independent Component Analysis) based approach. In the literature we found that ICA based methods have followed the same procedure without any exception, first PCA(Principal Component Analysis) has been used for feature extraction, next ICA learning method has been applied for feature enhancement in the reduced dimension. However, it is contradiction that features are extracted using higher order moments depend on variance, the second order statistics. It is not considered that a necessary component can be located in the discarded feature space. In the new methodology, features are extracted using the magnitude of kurtosis(4-th order central moment or cumulant). This corresponds to the PCA based feature extraction using eigenvalue(2nd order central moment or variance). The synergy effect of PCA and ICA can be achieved if PCA is used for noise reduction filter. ICA methodology is analysed using SVD(Singular Value Decomposition). PCA does whitening and noise reduction. ICA performs the feature extraction. Simulation results show the effectiveness of the methodology compared to the conventional ICA approach.

  • PDF

부분 최소제곱법을 이용한 얼굴 인식에 관한 연구 (A Study on Face Recognition based on Partial Least Squares)

  • 이창범;김도향;백장선;박혁로
    • 정보처리학회논문지B
    • /
    • 제13B권4호
    • /
    • pp.393-400
    • /
    • 2006
  • 얼굴 인식에서 얼굴 이미지의 특정 추출 방법에는 여러 가지가 있다. 그러나, 얼굴 이미지의 대부분은 표본의 수보다 특정 변수의 수가 많기 때문에 이러한 점을 고려한 특정 추출 방법이 필요하다. 본 논문에서는 부분 최소제곱법을 이용하여 특정 벡터의 차원을 축소하는 방법을 제안한다. 전통적인 차원 축소 방법인 주성분 분석은 클래스의 정보를 고려하지 않고 최대 변이를 가지는 성분을 추출하기 때문에, 클래스의 구분에 필요한 특정을 필수적으로 추출하지 못한다. 이에 비해, 부분 최소제곱법은 클래스 변수에 대한 정보를 포함하여 성분을 추출한다. 그러므로, 분류를 하는데 있어서는 주성분 분석에 의해 추출된 성분보다는 부분 최소제곱법에 의해 추출된 성분이 보다 더 예측적이다. 맨체스터와 ORL 얼굴 데이터베이스를 이용하여 실험한 결과, 분류와 차원 축소 측면에서 주성분 분석 방법보다는 부분 최소제곱법을 이용한 방법이 그 성능이 우수함을 알 수 있었다.

PCA 기반 특징 되먹임을 이용한 중요 영역 추출 (Extraction of Important Areas Using Feature Feedback Based on PCA)

  • 이승현;김도연;최상일;정구민
    • 한국정보전자통신기술학회논문지
    • /
    • 제13권6호
    • /
    • pp.461-469
    • /
    • 2020
  • 본 논문에서는 손글씨 숫자 데이터셋, 얼굴 데이터셋의 중요영역 추출을 위한 PCA 기반의 특징되먹임방법을 제안한다. 이전의 LDA 기반의 특징되먹임 방법을 확장하여 PCA 기반 특징되먹임 방법이 제안된다. 제안된 방법에서 데이터에 차원 축소 머신러닝 알고리듬 중 하나인 PCA 기법을 적용하여 데이터를 중요한 특징 차원들로 축소한다. 차원 축소과정에서 도출되는 weight를 통해 축소된 각 차원 축에서의 데이터 중요 지점을 확인한다. 각 차원 축은 축의 고유값의 크기에 따라 전체 데이터에서의 가중치가 다르다. 이에 각 차원 축의 고유값의 크기에 비례하는 가중치를 부여하여 각 차원 축에서의 데이터 중요 지점을 합하는 연산 과정을 거친다. 연산 과정을 통해 얻어진 데이터에 Threshold를 적용하여 데이터의 중요 영역을 구한다. 그 후 도출된 데이터의 중요 영역에 원본데이터로 역매핑을 유도하여 원본 데이터 공간에서 중요영역을 선택한다. MNIST 데이터셋에 대한 실험 결과를 확인하고 기존의 LDA 기반의 특징되먹임 방법을 통한 결과와 비교를 하여 PCA기반 특징되먹임을 기반한 패턴 인식 방법의 유효성과 가능성을 확인한다.

이차원 퓨리에 변환의 크기와 위상을 이용한 커버곡 검색 (Cover song search based on magnitude and phase of the 2D Fourier transform)

  • 서진수
    • 한국음향학회지
    • /
    • 제37권6호
    • /
    • pp.518-524
    • /
    • 2018
  • 라이브 음악 또는 리메이크를 통해서 재발매된 음악을 원곡의 커버곡이라 부른다. 본 논문은 고속 커버곡 검색을 위한 특징 축약을 위해 2차원 퓨리에 변환을 이용하는 방법을 연구하였다. 이차원 퓨리에 변환은 조변화에 대해서 불변성을 가지고 있으므로, 커버곡 검색을 위한 특징 축약 방법으로 적합하다. 기존 퓨리에 변환 방법에서는 크기값 만을 활용하였으나, 본 논문에서는 인접한 크로마 블록은 같은 조변화를 가진다는 가정하에 위상 정보를 추가로 활용하는 방법을 제안하였다. 두 가지 커버곡 실험 데이터셋에서 성능 비교를 수행하였으며, 제안된 방법이 기존 방법에 비해서 우수한 커버곡 검색 정확도를 보임을 확인하였다.