• 제목/요약/키워드: Feature descriptor

검색결과 206건 처리시간 0.018초

Human Action Recognition Via Multi-modality Information

  • Gao, Zan;Song, Jian-Ming;Zhang, Hua;Liu, An-An;Xue, Yan-Bing;Xu, Guang-Ping
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.739-748
    • /
    • 2014
  • In this paper, we propose pyramid appearance and global structure action descriptors on both RGB and depth motion history images and a model-free method for human action recognition. In proposed algorithm, we firstly construct motion history image for both RGB and depth channels, at the same time, depth information is employed to filter RGB information, after that, different action descriptors are extracted from depth and RGB MHIs to represent these actions, and then multimodality information collaborative representation and recognition model, in which multi-modality information are put into object function naturally, and information fusion and action recognition also be done together, is proposed to classify human actions. To demonstrate the superiority of the proposed method, we evaluate it on MSR Action3D and DHA datasets, the well-known dataset for human action recognition. Large scale experiment shows our descriptors are robust, stable and efficient, when comparing with the-state-of-the-art algorithms, the performances of our descriptors are better than that of them, further, the performance of combined descriptors is much better than just using sole descriptor. What is more, our proposed model outperforms the state-of-the-art methods on both MSR Action3D and DHA datasets.

얼굴 정보를 이용한 대형 카메라 네트워크에서의 사람 추적 시스템 (Human Tracking System in Large Camera Networks using Face Information)

  • 이영건
    • 한국정보통신학회논문지
    • /
    • 제26권12호
    • /
    • pp.1816-1825
    • /
    • 2022
  • 본 논문에서는 다양한 해상도의 카메라를 사용하는 감시 카메라 네트워크에서 각 사람을 추적하는 새로운 접근 방식을 제안한다. 다수의 비겹침 카메라 상에서 사람 추적 시 기존에 사용되던 사람 특징 정보는 다양한 카메라 시야 조건에 쉽게 영향을 받는다. 이러한 한계를 극복하기 위해 제안하는 시스템은 외모 정보와 함께 얼굴 정보를 활용한다. 일반적으로 감시 카메라로 촬영하는 사람 영상은 해상도가 낮은 경우가 많기 때문에 추적을 용이하게 하기 위해 저해상도 얼굴에서도 유용한 특징을 추출할 수 있어야 한다. 제안하는 추적 방식에서 사람 얼굴 특징을 추출하기 위해 탐지된 얼굴을 정면화한 후 텍스쳐 기반의 특징을 추출한다. 또한 감시 카메라에 포착된 얼굴의 크기가 매우 작은 경우 얼굴을 확대하는 초해상도 기법도 함께 활용한다. 공개된 데이터셋인 Dana36을 이용하여 수행한 실험결과를 통해 제안된 알고리즘의 우수한 성능을 보여준다.

SIFT와 신경망을 이용한 학습 기반 차량 번호판 검출 (Learning-based Detection of License Plate using SIFT and Neural Network)

  • 홍원주;김민우;오일석
    • 전자공학회논문지
    • /
    • 제50권8호
    • /
    • pp.187-195
    • /
    • 2013
  • 차량 번호판 검출의 기존 연구들은 대부분 높은 성능을 얻기 위해 영상 획득 환경을 제한한다. 본 논문은 제약사항이 적은 환경에서 다양한 종류의 차량 번호판을 검출하기 위해 SIFT와 신경망을 이용한 새로운 방법을 제안한다. SIFT는 영상의 크기, 회전 변화에 불변하는 지역특징으로서 처리해야 할 환경이 고정되지 않은 경우에도 분별력이 뛰어나다. 영상에서 추출한 SIFT를 번호판 내부의 것(내부 부류)과 외부의 것(외부 부류)으로 나누어 2부류 분류기를 학습한다. 분류기는 신경망을 사용하며, 찾고자 하는 번호판의 종류를 학습 집합에 포함하는 것으로 다양한 종류의 번호판을 동일한 알고리즘으로 검출할 수 있다. 제안하는 방법은 입력 영상에서 지역특징을 추출하고 미리 학습한 분류기로 번호판 내부 부류를 가려낸다. 분류기의 성능이 높지 않더라도 분류 결과 내부 부류는 번호판 내부에 밀집하여 나타나고 번호판 외부에서는 흩어져 나타난다. 이러한 특성을 이용해 지역특징 맵을 만들고, 이 맵에서 임계값 이상인 전역 최댓값을 번호판 영역으로 검출한다. 다양한 환경에서 데이터 베이스를 수집하고 지역특징 분류와 번호판 검출 알고리즘을 실험한다. 지역특징을 분류기로 분류한 결과 정인식률은 97.1%, 정확률은 62.0%, 재현율은 50.2%를 보였다. 정인식률에 비해 정확률과 재현율은 낮았지만, 번호판 검출 결과 98.6%의 높은 검출 성능을 보였다.

SOSiM: 형태 특징 기술자를 사용한 형태 기반 객체 유사성 매칭 (SOSiM: Shape-based Object Similarity Matching using Shape Feature Descriptors)

  • 노충호;이석룡;정진완;김상희;김덕환
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제36권2호
    • /
    • pp.73-83
    • /
    • 2009
  • 본 논문에서는 영상 내의 객체의 형태(shape)에 기반한 객체 유사성 매칭(matching) 방법을 제안한다. 제안한 방법에서는 객체의 윤곽선(edge)에서 점들(edge points)을 추출하고, 추출된 점들의 위치 관계를 나타내기 위하여 각 점을 기준으로 로그 원형 히스토그램(log polar histogram)을 생성하였다. 객체의 윤곽을 따라가며 각 점에 대한 원형 히스토그램을 순차적으로 비교함으로써 객체간의 매칭이 이루어지며, 데이타베이스로부터 유사한 객체를 검색하기 위하여 사용한 매칭 방식은 널리 알려진 k-NN(nearest neighbor) 질의 방식을 사용하였다. 제안한 방법을 검증하기 위하여 기존의 형태 문맥 기법(Shape Context method)과 제안한 방법을 비교하였으며, 객체 유사성 매칭 실험에서 k=5일 때 기존 방법의 정확도가 0.37, 제안한 방법이 0.75-0.90이며, k=10일 때 기존 방법이 0.31, 제안한 방법이 0.61-0.80로서 기존의 방법에 비해 정확한 매칭 결과를 보여 주었다. 또한 영상의 회전 변형 실험에서 기존 방법의 정확도가 0.30, 제안한 방법이 0.69로서 기존 방법보다 회전 변형에 강인한(robust) 특성을 가짐을 관찰할 수 있었다.

영상 폐색영역 검출 및 해결을 위한 딥러닝 알고리즘 적용 가능성 연구 (A Study on the Applicability of Deep Learning Algorithm for Detection and Resolving of Occlusion Area)

  • 배경호;박홍기
    • 한국산학기술학회논문지
    • /
    • 제20권11호
    • /
    • pp.305-313
    • /
    • 2019
  • 최근 드론을 이용한 공간정보 구축이 활성화되면서 공간정보 산업발전에 많은 기여를 하고 있다. 하지만 드론 공간정보는 카메라의 중심투영에 의한 발생하는 폐색영역 뿐 아니라 가로수, 보행자, 현수막과 같은 적치물에 의한 폐색 영역이 필연적으로 발생한다. 이러한 폐색영역을 효율적으로 해결하기 위한 다양한 방안이 연구되고 있다. 본 연구에서는 폐색영역 해결을 위해 원초적인 재촬영이 아닌 딥러닝 알고리즘을 적용하기 위한 다양한 알고리즘별 조사 및 비교 연구를 수행하였다. 그 결과, 객체 검출 알고리즘인 HOG부터 기계학습 방법인 SVM, 딥러닝 방식인 DNN, CNN, RNN까지 다양한 모델들이 개발 및 적용되고 있으며, 이 중 영상의 분류, 검출에 가장 보편적이고 효율적인 알고리즘은 CNN 기법임을 확인하였다. 향후 AI 기반의 자동 객체 탐지와 분류는 공간정보 분야에서 각광받는 최신 과학기술이다. 이를 위해 다양한 알고리즘에 대한 검토와 적용은 중요하다. 따라서, 본 연구에서 제시하는 알고리즘별 적용 가능성은 자동으로 드론 영상의 폐색영역을 탐지하고 해결할 수 있어 공간정보 구축의 시간, 비용, 인력에 대한 효율성 향상에 기여할 것으로 판단된다.

모양분류와 컬러정보를 이용한 내용기반 약 영상 검색 시스템 (A Contents-based Drug Image Retrieval System Using Shape Classification and Color Information)

  • 전준철;김동선
    • 인터넷정보학회논문지
    • /
    • 제12권6호
    • /
    • pp.117-128
    • /
    • 2011
  • 본 논문에서는 약 영상의 모양 분류와 컬러정보를 이용한 새로운 내용기반 약 영상 검색 시스템을 제안한다. 내용기반 약 영상검색 시스템의 구현에 있어 주요 문제점은 유사한 모양과 색상을 지닌 영상이 너무 많이 존재한다는 것이며, 단순히 약 영상의 한 가지 특성에 의해서는 특정한 약을 확인하기 어렵다는 것이다. 이러한 약 영상 구분의 문제를 해결하기 위하여 본 논문에서는 약 영상의 모양과 색상에 근거한 복합적인 영상검색 방법을 제시하였다. 제안된 방법의 첫 단계에서는 약 영상을 모양에 의해 분류한 후 두 번째 단계에서 분류된 영상들 가운데 약 영상의 색상 정보를 이용하여 약 영상을 검색하였다. 모양 분류를 위하여 대상 약의 경계선으로부터 추출된 고유의 모양신호를 추출하여 사용하였다. 모양신호에 의해 분류된 영상으로부터 색조(hue)와 채도(saturation)정보를 이용하여 데이터베이스 영상으로부터 질의 영상과 유사도 가 높은 영상을 검색 추출하였다. 제안된 시스템은 약 영상의 시각적 특성에 의해 노인과 같은 특정한 사용자들이 영상을 쉽게 검색할 수 있도록 개발되었다. 실험을 통해 제안된 자동 시스템이 약 영상을 인식하고 검색하는데 신뢰성 있고 편리하다는 것을 입증 하였다.