• Title/Summary/Keyword: Feature descriptor

Search Result 206, Processing Time 0.026 seconds

Recognition and Pose Estimation of 3-D Objects for Visual Servoing (Visual Servoing을 위한 3차원 물체의 인식 및 자세 추정)

  • Yang, Jae-Ho;Jeong, Moon-Ho;Park, Mig-Non
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1931-1932
    • /
    • 2006
  • 로봇이 어떤 물체를 인지하고 그 물체에 대해 어떤 작업을 하고자 할 때 특정 물체의 인식 문제, 3차원 정보를 획득하는 문제, 자세를 추정하는 문제 등 해결해야 될 문제들이 있다. 물체를 인식하는 과정에서는 주위 배경과 물체의 크기의 변화, 회전, 가려짐 등으로 인해 물체 인식을 어렵게 만드는 요소들이 있다. 2차원 이미지를 통해 3차원 정보를 추출하는 과정은 일반적으로 두 대의 카메라를 이용하여 스테레오 이미지를 통해 얻는다. 이 때 좌우 영상간의 매칭의 과정이 필요하다. 자세 추정의 문제는 카메라 좌표와 물체의 좌표간의 관계를 알아야 한다. Visual Servoing을 어렵게 만드는 많은 요인들이 있으며 본 논문에서는 물체의 크기, 회전, 이동에 불변인 디스크립터(descriptor)를 사용하는 SIFT(Scale Invariant Feature Transform)를 통해 3차원 물체의 인식과 자세를 추정하는 방법을 제시한다. 또한 자세 추정을 위해 2차원 Keypoint들의 매칭을 3차원 정보를 통해 검증하는 방법을 제시한다. (SIFT에 의해 추출된 point를 Keypoint라 명한다.)

  • PDF

Post-Processing for JPEG-Coded Image Deblocking via Sparse Representation and Adaptive Residual Threshold

  • Wang, Liping;Zhou, Xiao;Wang, Chengyou;Jiang, Baochen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1700-1721
    • /
    • 2017
  • The problem of blocking artifacts is very common in block-based image and video compression, especially at very low bit rates. In this paper, we propose a post-processing method for JPEG-coded image deblocking via sparse representation and adaptive residual threshold. This method includes three steps. First, we obtain the dictionary by online dictionary learning and the compressed images. The dictionary is then modified by the histogram of oriented gradient (HOG) feature descriptor and K-means cluster. Second, an adaptive residual threshold for orthogonal matching pursuit (OMP) is proposed and used for sparse coding by combining blind image blocking assessment. At last, to take advantage of human visual system (HVS), the edge regions of the obtained deblocked image can be further modified by the edge regions of the compressed image. The experimental results show that our proposed method can keep the image more texture and edge information while reducing the image blocking artifacts.

A Study on Shape Matching of Two-Dimensional Object using Relaxation (Relaxation을 이용한 2차원 물체의 형상매칭에 관한 연구)

  • 곽윤식;이대령
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.1
    • /
    • pp.133-142
    • /
    • 1993
  • This paper prrsents shape matching of two-dimensional object. This shape matching is applied to two-dimensional simple c10sedcurves represented by polygons. A large number of shape matching procedures have proposed baseed on teh view that shape can be represented by a vector of numerical features, and that this representation can be matched using techniques from statical pattern recognition. The varieties of features that have been extracted from shapes and used to represent them are numerous. But all of these feature-based approches suffer from the shortcoming that the descriptor of a segment of a shape do not ordinarily bear any simple relations hip to the description for the entire shape. We solve the segment matching problem of shape matching, defined as the recognition of a piece of a shape as approximate match to a part of large shape, by using relaxation labeling technique.

  • PDF

Face Recognition using Extended Center-Symmetric Pattern and 2D-PCA (Extended Center-Symmetric Pattern과 2D-PCA를 이용한 얼굴인식)

  • Lee, Hyeon Gu;Kim, Dong Ju
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.111-119
    • /
    • 2013
  • Face recognition has recently become one of the most popular research areas in the fields of computer vision, machine learning, and pattern recognition because it spans numerous applications, such as access control, surveillance, security, credit-card verification, and criminal identification. In this paper, we propose a simple descriptor called an ECSP(Extended Center-Symmetric Pattern) for illumination-robust face recognition. The ECSP operator encodes the texture information of a local face region by emphasizing diagonal components of a previous CS-LBP(Center-Symmetric Local Binary Pattern). Here, the diagonal components are emphasized because facial textures along the diagonal direction contain much more information than those of other directions. The facial texture information of the ECSP operator is then used as the input image of an image covariance-based feature extraction algorithm such as 2D-PCA(Two-Dimensional Principal Component Analysis). Performance evaluation of the proposed approach was carried out using various binary pattern operators and recognition algorithms on the Yale B database. The experimental results demonstrated that the proposed approach achieved better recognition accuracy than other approaches, and we confirmed that the proposed approach is effective against illumination variation.

Gabor and Wavelet Texture Descriptors in Representing Textures in Arbitrary Shaped Regions (임의의 영역 안에 텍스처 표현을 위한 Wavelet및 Gabor 텍스처 기술자와 성능평가)

  • Sim Dong-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.3
    • /
    • pp.287-295
    • /
    • 2006
  • This paper compares two different approaches based on wavelet and Gabor decomposition towards representing the texture of an arbitrary region. The Gabor-domain mean and standard deviation combination is considered to be best in representing the texture of rectangular regions. However, texture representation of arbitrary regions would enable generalized object-based image retrieval and other applications in the future. In this study, we have found that the wavelet features perform better than the Gabor features in representing the texture of arbitrary regions. Particularly, the wavelet-domain standard deviation and entropy combination results in the best retrieval accuracy. Based on our experiment with texture image sets, we present and compare tile retrieval accuracy of multiple wavelet and Gabor feature combinations.

  • PDF

A Robust Method for Automatic Segmentation and Recognition of Apoptosis Cell (Apoptosis 세포의 자동화된 분할 및 인식을 위한 강인한 방법)

  • Liu, Hai-Ling;Shin, Young-Suk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.6
    • /
    • pp.464-468
    • /
    • 2009
  • In this paper we propose an image-based approach, which is different from the traditional flow cytometric method to detect shape of apoptosis cells. This method can overcome the defects of cytometry and give precise recognition of apoptosis cells. In this work K-means clustering was used to do the rough segmentation and an active contour model, called 'snake' was used to do the precise edge detection. And then some features were extracted including physical feature, shape descriptor and texture features of the apoptosis cells. Finally a Mahalanobis distance classifier classifies the segmentation images as apoptosis and non-apoptosis cell.

Novel Method for Face Recognition using Laplacian of Gaussian Mask with Local Contour Pattern

  • Jeon, Tae-jun;Jang, Kyeong-uk;Lee, Seung-ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5605-5623
    • /
    • 2016
  • We propose a face recognition method that utilizes the LCP face descriptor. The proposed method applies a LoG mask to extract a face contour response, and employs the LCP algorithm to produce a binary pattern representation that ensures high recognition performance even under the changes in illumination, noise, and aging. The proposed LCP algorithm produces excellent noise reduction and efficiency in removing unnecessary information from the face by extracting a face contour response using the LoG mask, whose behavior is similar to the human eye. Majority of reported algorithms search for face contour response information. On the other hand, our proposed LCP algorithm produces results expressing major facial information by applying the threshold to the search area with only 8 bits. However, the LCP algorithm produces results that express major facial information with only 8-bits by applying a threshold value to the search area. Therefore, compared to previous approaches, the LCP algorithm maintains a consistent accuracy under varying circumstances, and produces a high face recognition rate with a relatively small feature vector. The test results indicate that the LCP algorithm produces a higher facial recognition rate than the rate of human visual's recognition capability, and outperforms the existing methods.

A Hybrid of Smartphone Camera and Basestation Wide-area Indoor Positioning Method

  • Jiao, Jichao;Deng, Zhongliang;Xu, Lianming;Li, Fei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.723-743
    • /
    • 2016
  • Indoor positioning is considered an enabler for a variety of applications, the demand for an indoor positioning service has also been accelerated. That is because that people spend most of their time indoor environment. Meanwhile, the smartphone integrated powerful camera is an efficient platform for navigation and positioning. However, for high accuracy indoor positioning by using a smartphone, there are two constraints that includes: (1) limited computational and memory resources of smartphone; (2) users' moving in large buildings. To address those issues, this paper uses the TC-OFDM for calculating the coarse positioning information includes horizontal and altitude information for assisting smartphone camera-based positioning. Moreover, a unified representation model of image features under variety of scenarios whose name is FAST-SURF is established for computing the fine location. Finally, an optimization marginalized particle filter is proposed for fusing the positioning information from TC-OFDM and images. The experimental result shows that the wide location detection accuracy is 0.823 m (1σ) at horizontal and 0.5 m at vertical. Comparing to the WiFi-based and ibeacon-based positioning methods, our method is powerful while being easy to be deployed and optimized.

A Frame-Based Video Signature Method for Very Quick Video Identification and Location

  • Na, Sang-Il;Oh, Weon-Geun;Jeong, Dong-Seok
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.281-291
    • /
    • 2013
  • A video signature is a set of feature vectors that compactly represents and uniquely characterizes one video clip from another for fast matching. To find a short duplicated region, the video signature must be robust against common video modifications and have a high discriminability. The matching method must be fast and be successful at finding locations. In this paper, a frame-based video signature that uses the spatial information and a two-stage matching method is presented. The proposed method is pair-wise independent and is robust against common video modifications. The proposed two-stage matching method is fast and works very well in finding locations. In addition, the proposed matching structure and strategy can distinguish a case in which a part of the query video matches a part of the target video. The proposed method is verified using video modified by the VCE7 experimental conditions found in MPEG-7. The proposed video signature method achieves a robustness of 88.7% under an independence condition of 5 parts per million with over 1,000 clips being matched per second.

A Practical Solution toward SLAM in Indoor environment Based on Visual Objects and Robust Sonar Features (가정환경을 위한 실용적인 SLAM 기법 개발 : 비전 센서와 초음파 센서의 통합)

  • Ahn, Sung-Hwan;Choi, Jin-Woo;Choi, Min-Yong;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.25-35
    • /
    • 2006
  • Improving practicality of SLAM requires various sensors to be fused effectively in order to cope with uncertainty induced from both environment and sensors. In this case, combining sonar and vision sensors possesses numerous advantages of economical efficiency and complementary cooperation. Especially, it can remedy false data association and divergence problem of sonar sensors, and overcome low frequency SLAM update caused by computational burden and weakness in illumination changes of vision sensors. In this paper, we propose a SLAM method to join sonar sensors and stereo camera together. It consists of two schemes, extracting robust point and line features from sonar data and recognizing planar visual objects using multi-scale Harris corner detector and its SIFT descriptor from pre-constructed object database. And fusing sonar features and visual objects through EKF-SLAM can give correct data association via object recognition and high frequency update via sonar features. As a result, it can increase robustness and accuracy of SLAM in indoor environment. The performance of the proposed algorithm was verified by experiments in home -like environment.

  • PDF