• 제목/요약/키워드: Feature analyze

검색결과 831건 처리시간 0.026초

STEP AP224에 표현된 특징형상 정보의 솔리드 모델 복원에 관한 연구 (A study on the Restoration of Feature Information in STEPAP224 to Solid model)

  • 김야일;강무진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.367-372
    • /
    • 2001
  • Feature restoration is that restore feature to 3D solid model using the feature information in STEP AP224. Feature is very important in CAPP, but feature information is defined very complicated in STEP AP224. This paper recommends the algorithm of extraction the feature information in physical STEP AP224file. This program import STEP AP224 file, parse the geometric and topological information, the tolerance data, and feature information line-by-line. After importation and parsing, store data into database. Feature restoration module analyze database including feature information, extract feature information, e.g. feature type, feature's parameter, etc., analyze the relationship and then restore feature to 3D solid model.

  • PDF

Comparative Analysis of Detection Algorithms for Corner and Blob Features in Image Processing

  • Xiong, Xing;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권4호
    • /
    • pp.284-290
    • /
    • 2013
  • Feature detection is very important to image processing area. In this paper we compare and analyze some characteristics of image processing algorithms for corner and blob feature detection. We also analyze the simulation results through image matching process. We show that how these algorithms work and how fast they execute. The simulation results are shown for helping us to select an algorithm or several algorithms extracting corner and blob feature.

다중 클래스 분포 문제에 대한 분류 정확도 분석 (Analysis of Classification Accuracy for Multiclass Problems)

  • 최의선;이철희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.190-193
    • /
    • 2000
  • In this paper, we investigate the distribution of classification accuracies of multiclass problems in the feature space and analyze performances of the conventional feature extraction algorithms. In order to find the distribution of classification accuracies, we sample the feature space and compute the classification accuracy corresponding to each sampling point. Experimental results showed that there exist much better feature sets that the conventional feature extraction algorithms fail to find. In addition, the distribution of classification accuracies is useful for developing and evaluating the feature extraction algorithm.

  • PDF

Efficient Signal Feature Detection method using Spectral Correlation Function in the Fading channel

  • Song, Chang-Kun;Kim, Kyung-Seok
    • International Journal of Contents
    • /
    • 제3권2호
    • /
    • pp.35-39
    • /
    • 2007
  • The cognitive radio communication is taking the attentions because the development of the technique came to be possible to analyze wireless signals. In the IEEE 802.22 WRAN Systems[1], how to detect a spectrum and signals is continuously studied. In this paper, we propose the efficient signal detection method using SCF (Spectral Correlation Function). It is easy to detect the signal feature when we are using the SCF. Because most modulated signals have the cyclo-stationarity which is unique for each signal. But the fading channel effected serious influence even though it detects the feature of the signal. We applied LMS(Least Mean Square) filter for the compensation of the signal which is effected the serious influence in the fading channel. And we analyze some signal patterns through the SCF. And we show the unique signal feature of each signal through the SCF method. It is robust for low SNR(Signal to Noise Ratio) environment and we can distinguish it in the fading channel using LMS Filter.

LSTM 신경망과 Du-CNN을 융합한 적외선 방사특성 예측 및 표적과 클러터 구분을 위한 CR-DuNN 알고리듬 연구 (A Study of CR-DuNN based on the LSTM and Du-CNN to Predict Infrared Target Feature and Classify Targets from the Clutters)

  • 이주영
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.153-158
    • /
    • 2019
  • In this paper, we analyze the infrared feature for the small coast targets according to the surrounding environment for autonomous flight device equipped with an infrared imaging sensor and we propose Cross Duality of Neural Network (CR-DuNN) method which can classify the target and clutter in coastal environment. In coastal environment, there are various property according to diverse change of air temperature, sea temperature, deferent seasons. And small coast target have various infrared feature according to diverse change of environment. In this various environment, it is very important thing that we analyze and classify targets from the clutters to improve target detection accuracy. Thus, we propose infrared feature learning algorithm through LSTM neural network and also propose CR-DuNN algorithm that integrate LSTM prediction network with Du-CNN classification network to classify targets from the clutters.

Recent Advances in Feature Detectors and Descriptors: A Survey

  • Lee, Haeseong;Jeon, Semi;Yoon, Inhye;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권3호
    • /
    • pp.153-163
    • /
    • 2016
  • Local feature extraction methods for images and videos are widely applied in the fields of image understanding and computer vision. However, robust features are detected differently when using the latest feature detectors and descriptors because of diverse image environments. This paper analyzes various feature extraction methods by summarizing algorithms, specifying properties, and comparing performance. We analyze eight feature extraction methods. The performance of feature extraction in various image environments is compared and evaluated. As a result, the feature detectors and descriptors can be used adaptively for image sequences captured under various image environments. Also, the evaluation of feature detectors and descriptors can be applied to driving assistance systems, closed circuit televisions (CCTVs), robot vision, etc.

Software 제품계열공학에서 온톨로지에 기반한 feature의 공통성 및 가변성 분석모델 (An approach to analyze commonality and variability of feature based on Ontology in Software Product line Engineering)

  • 김진우;이순복;이태웅;백두권
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (C)
    • /
    • pp.139-141
    • /
    • 2006
  • 제품계열공학에서 feature diagram(FD)은 개발자의 직관이나 도메인 전문가의 경험에 근거하여 작성되어, feature간의 공통성 및 가변성분석 기준이 불명확하며 비정형적인 feature의 공통성 및 가변성 분석으로 인한 stakeholder의 공통된 이해가 부족한 문제점을 내포하고 있다. 따라서, 본 논문에서는 이를 해결하기 위하여 공통된 feature의 이해를 위해 feature 속성리스트에 기반한 메타 feature모델과 feature간의 의미유사성관계를 이용한 온톨로지를 적용한 공통성 및 가변성 분석모델을 제안한다.

  • PDF

단백질 구조 및 기능 분석을 위한 FEATURE 시스템 개선 (Deciphering FEATURE for Novel Protein Data Analysis and Functional Annotation)

  • 유승학;윤성로
    • 전기전자학회논문지
    • /
    • 제13권3호
    • /
    • pp.18-23
    • /
    • 2009
  • FEATURE는 단백질 내에서 특정 기능이나 구조를 가지고 있는 site의 미세환경분포를 이용하여 다른 단백질 내에서 이와 유사한 미세환경을 가지고 있는 부분을 찾아 그 분분이 site일 확률을 수치적으로 제시해 줌으로써 사용자로 하여금 site의 존재 유무와 그 위치를 판단하는데 기준을 제공해주는 유용한 툴이다. 하지만 기존의 FEATURE에서 사용된 데이터 이외의 새로운 단백질 구조 데이터를 FEATURE에 적용하기 위해서는 FEATURE 내부의 module을 입력 데이터 구조에 맞게 수정해야 한다. 그러나 FEATURE 내부의 module 구조를 수정하는 방식이 직관적이지 않기 때문에 많은 연구자들이 FEATURE를 원활하게 사용하지 못하였다. 따라서 본 논문에서는 FEATURE의 내부 구조를 분석하고 FEATURE를 새로운 단백질 데이터에 적용하기 위한 방법을 제시한다.

  • PDF

손바닥 특징패턴을 이용한 개인식별 (Personal Verification using Feature Patterns of Palmprint)

  • 전선배;임영도
    • 한국통신학회논문지
    • /
    • 제17권12호
    • /
    • pp.1437-1450
    • /
    • 1992
  • 본 논문에서는 손바닥의 interdigital영역으로 부터 특징패턴을 추출하는 과정과 이 특징패턴과 관련된 자료를 이용한 개인식별 방법을 제안하였다. 처리과정은 interdigital영역을 일정한 크기로 분할하고 각 분할된 영역에 대하여 융선의 분포에 따른 4방향의 방향 코드를 부여한후 이것을 분석하는 것에 의해 특징패턴의 존재 유무와 1차 중심점을 검출하였다. 검출된 1차 중심점의 주변 제한된 영역에 대해서만 세선화와 융선 추적을 통하여 특징패턴의 종류와 2차 중심점(core)을 구하였다. 2차 중심점들을 연결하는 특징패턴 좌표계를 설정하고 각 중심점에 대한 상대적 거리와 방향정보 특징 패턴의 종류등에 대한 특징 파라미터를 구하였다. 식별실험은 각 특징패턴의 종류와 수, 존재위치에 의하여 판단하거나 특징 파라미터를 비교, 분석하는 것에 의해 수행하였다.

  • PDF

Big 5 성격 요소와 머신 러닝 알고리즘을 통한 창의적인 사람들의 특징 연구 (Feature Selection for Creative People Based on Big 5 Personality traits and Machine Learning Algorithms)

  • 김용준
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.97-102
    • /
    • 2019
  • 창의적인 사람에 대한 정확한 기준이나 수치화를 사용하여 체계적인 분류와 분석 방법이 없었기에 정의하는 데에 어려움이 많다. 이 문제를 해결하기 위하여 본 연구에서는 창의적인 사람을 어떻게 구분 지을 수 있을지에 대한 것과 어떤 유사한 성격이 있는지 분석한다. 본 연구에서 우선 Big 5 성격 특성 기법을 이용하여 설문조사를 진행하고, 그 설문조사로 얻은 데이터 세트를 가지고 데이터 마이닝 도구인 WEKA를 이용하여 데이터 세트를 분류하고 분석한 뒤, 창의적인 사람들과 연관성 있는 성격 특징들을 다양한 머신 러닝 기법을 이용하여 분석하는 것을 목표로 진행하였다. 7개의 특징 선택 알고리즘을 활용하고, 특징 선택 알고리즘들로 분류된 특징 집단을 선택하여 머신 러닝 알고리즘에 적용하여 정확도를 알아냈고, 서포트 벡터 머신을 통해 나온 특징이 가장 높은 분류 결과를 도출하였다.