본 논문에서는 다중 클래스 데이터를 위한 특징 추출 방법을 최적화하는 기법을 제안한다 제안된 특징 추출 기법은 분류 오차에 기반한 방법으로 특징 공간(feature space)을 탐색하여 가우시안 최대우도 분류기 (Gaussian ML Classifier)의 분류오차(classification error)가 최소가 되도록 하는 특징벡터 집합을 구하는 방법이다 제안된 방법은 임의의 초기 특징벡터를 설정한 후 steepest descent 알고리즘을 적용하여 분류오차가 감소하는 방향으로 초기벡터를 갱신시킨다 본 논문에서는 순차탐색 및 전체탐색 두 가지의 방법을 제안하며 순차탐색은 추가로 특징벡터를 구하는 경우 이미 구해진 특징벡터를 포함하여 최소의 분류오차를 얻을 수 있는 특징벡터를 구한다 반면에 전체탐색 방법은 추가의 특징벡터를 구할 경우 새로운 초기 특징벡터 집합을 설정하여 이미 구해진 특징벡터를 포함하는 제약을 받지 않는다. 실험결과 제안된 두 가지 방법은 기존의 특징추출 방법보다 우수한 성능을 보여주고 있다.
본 논문은 다단계 특징벡터를 이용한 분류기 모델(Multistage Feature-based Classification Model: MFCM)을 제안하는데, MFCM은 주어진 데이터에서 추출된 특징벡터 전체를 한 번에 이용하지 않고, 같은 성질들의 특징벡터들끼리 모아서, 여러 단계에 걸쳐서 분류에 이용한다. 학습단계에서, 같은 성질을 가지는 특징벡터 그룹 각각을 이용하는 국지적 분류기의 분류 정확도 산출을 통해 각 특징벡터그룹의 기여도를 측정한다. 분류단계에서는 각 특징벡터그룹의 기여도에 따라 차등적으로 가중치를 적용하여 최종적인 분류결론을 이끌어 낸다. 본 논문에서는 MFCM의 개념을 기존의 몇 가지 분류 알고리즘에 적용하고, 음악 장르 분류 문제에 응용하여, 제안된 알고리즘의 유용성에 관한 실험을 수행하였다. 실험의 결과 제안된 MFCM을 이용하는 분류기는 기존의 알고리즘과 비교하여 분류정확도에서 평균적으로 7%-13%의 성능향상을 보여준다.
본 연구에서는 웨이블릿 평면에서 대역 분할된 데이터를 특징 벡터로 하는 SVM을 이용한 ERP 검출 실험을 하였다. 뇌파 신호는 SCSD의 SCCN 뇌파 데이터베이스에 있는 시각적 자극(visual stimulus)을 이용하여 발생한 ERP를 사용하였다. 검출 알고리즘을 이용한 실험은 기존의 뇌파의 주파수 분석 데이터를 특징 벡터로 하는 방법과 웨이블릿 평면에서 전개된 뇌파 데이터를 특징 벡터로 하는 SVM 검출 방식을 비교하였다. 실험 결과는 기존의 특징 벡터를 이용하는 방법에 비하여 웨이블릿 평면에서 전개된 특징 벡터를 이용하는 SVM 방식이 EPR의 검출 율에서 약 10%의 향상된 성능을 나타내었다. 실험 결과에 대한 분석에서 웨이블릿 평면 특징 벡터를 적용한 SVM 실험 결과에서 검출율이 향상된 이유로서 대뇌 피질 활동이 ERP의 주파수 대역에 따른 활동성의 증감 특성과 ERP의 웨이블릿 평면 대역별 특성에 대한 비교 분석을 수행하였다.
본 연구의 목적은 숨은마코프모형을 사용하여 음성구간의 끝점을 검출하는 문제에서 소음의 환경에서도 강건하며 계산의 부하가 적은 이산형 특징벡터를 제안하고 이의 성질을 실증적으로 밝히는 것이다. 제시된 특징벡터는 일차원의 소리 신호의 에너지의 변화율을 나타내는 경사도이며 숨은마코프모형과 관련된 계산에서의 부하를 감소하기 위하여 세 개의 값으로 이산화하였다. 여러 소음 수준의 끝점 검출의 실험에서, 제시된 특징벡터가 잡음 환경에서도 강건함을 보였다.
본 논문은 퓨리에 변환을 이용한 3차원 폐곡면 객체의 특징 벡터 추출 기법을 제시한다. 특징 벡터는 3차원극좌표계를 이용하여 폐곡면 객체의 회전각도별 내측거리값을 퓨리에 변환을 통해 주파수 영역으로 변환하여 추출한다. 특징 벡터는 폐곡면 표면점과 중심점과의 관계를 나타내는 내측거리값을 활용하므로 위치 이동에 불변이고 내측거리값은 퓨리에 변환 전 정규화되기 때문에 크기 변화에 불변이며 퓨리에 변환 후 파워 스펙트럼을 적용하여 회전 변화 불변임을 보여주고 있다. 실험 결과 위치 이동, 크기 변화, 회전 변화에 불변임을 알 수 있고 서로 상이한 객체간에 변별력이 있어 객체 고유의 특징 벡터로써 활용이 가능함을 제시한다.
Autonomous mobile robot has an ability to navigate using both map in known environment and sensors for detecting obstacles in unknown environment. In general, autonomous mobile robot navigates by global path planning on the basis of already made map and local path planning on the basis of various kinds of sensors to avoid abrupt obstacles. This paper provides a global path planning method using self-organizing feature map which is a method among a number of neural network. The self-organizing feature map uses a randomized small valued initial weight vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. On the other hand, the modified method in this research uses a predetermined initial weight vectors, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. According to simulation results one can conclude that the modified neural network is useful tool for the global path planning problem of a mobile robot.
International Journal of Fuzzy Logic and Intelligent Systems
/
제13권1호
/
pp.12-18
/
2013
Motor imagery classification in electroencephalography (EEG)-based brain-computer interface (BCI) systems is an important research area. To simplify the complexity of the classification, selected power bands and electrode channels have been widely used to extract and select features from raw EEG signals, but there is still a loss in classification accuracy in the state-of- the-art approaches. To solve this problem, we propose a discriminative feature extraction algorithm based on power bands with principle component analysis (PCA). First, the raw EEG signals from the motor cortex area were filtered using a bandpass filter with ${\mu}$ and ${\beta}$ bands. This research considered the power bands within a 0.4 second epoch to select the optimal feature space region. Next, the total feature dimensions were reduced by PCA and transformed into a final feature vector set. The selected features were classified by applying a support vector machine (SVM). The proposed method was compared with a state-of-art power band feature and shown to improve classification accuracy.
International Journal of Fuzzy Logic and Intelligent Systems
/
제4권3호
/
pp.322-326
/
2004
This paper describes a new iris recognition method based on a shift-invariant wavelet sub-images. For the feature representation, we first preprocess an iris image for the compensation of the variation of the iris and for the easy implementation of the wavelet transform. Then, we decompose the preprocessed iris image into multiple subband images using a shift-invariant wavelet transform. For feature representation, we select a set of subband images, which have rich information for the classification of various iris patterns and robust to noises. In order to reduce the size of the feature vector, we quantize. each pixel of subband images using the Lloyd-Max quantization method Each feature element is represented by one of quantization levels, and a set of these feature element is the feature vector. When the quantization is very coarse, the quantized level does not have much information about the image pixel value. Therefore, we define a new similarity measure based on mutual information between two features. With this similarity measure, the size of the feature vector can be reduced without much degradation of performance. Experimentally, we show that the proposed method produced superb performance in iris recognition.
The researches of image recognition have been processed traditionally. Especially, face recognition technology has been received attractions with advance and applied to various areas according as camera sensor embedded into many devices such as smart phone. In this study, we design and develop a feature vector generation technique of face for making animation caricatures using methods for face detection which are previous stage of face recognition. At first, we detect both face region and detailed eye region of component element by Viola&Johns's realtime detection method which are called as ROI(Region Of Interest). And then, we generate feature vectors of eye region by utilizing factors as opposed to the periphery and by using appearance information of eye. At this point, we focus on the embedded information in many color spaces to overcome the problems which can be occurred by using one color space. We propose a feature vector generation method using information from many color spaces. Finally, we experiment the test of feature vector generation by the proposed method with enough quantity of sample picture data and evaluate the proposed method for factors of estimating performance such as error rate, accuracy and generation time.
This paper presents a method for classification of underwater transient signals using, which employs a binary image pattern of the mel-frequency cepstral coefficients(MFCC) as a feature vector and a neural network as a classifier. A feature vector is obtained by taking DCT and 1-bit quantization for the square matrix of the MFCC sequences. The classifier is a feed-forward neural network having one hidden layer and one output layer, and a back propagation algorithm is used to update the weighting vector of each layer. Experimental results with some underwater transient signals demonstrate that the proposed method is very promising for classification of underwater transient signals.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.