• Title/Summary/Keyword: Feature Signal Extraction

Search Result 346, Processing Time 0.031 seconds

Feature Extraction Technique for Insulation Fault of High Voltage Motor Stator Winding (고압전동기 고정자권선의 절연결함에 대한 특징추출기법)

  • Park Jae-Jun;Lee Sung-Young;Mun Dae-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.976-983
    • /
    • 2006
  • Multi-resolution Signal Decomposition (MSD) Technique of Wavelet Transform has interesting properties of capturing the embedded horizontal, vertical and diagonal variations within an image in a separable form. This feature was exploited to identify individual partial discharge sources present in multi-source PD pattern, usually encountered during practical PD measurement. Employing the Daubechies wavelet, feature were extracted from the third level decomposed and reconstructed horizontal and vertical component images. These features were found to contain the necessary discriminating information corresponding to the individual PD sources and multi-PD soruces.

Defect evaluations of weld zone in rails using attractor analysis (어트랙터 해석을 이용한 레일 용접부의 결함 평가)

  • Yi, Won;Yun, In-Sik;Kwon, Sung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.1
    • /
    • pp.38-46
    • /
    • 1999
  • This study proposes the analysis and evaluation method of time series ultrasonic signal using the attractor analysis. Features extracted from time series signal analyze quantitatively characteristics of weld defects. For this purpose, analysis objective in this study is fractal dimension and attractor quadrant feature. Trajectory changes in the attractor indicated a substantial difference in fractal characteristics resulting from distance shifts such as parts of head and flange even though the types of defects are identified. These differences in characteristics of weld defects enables the evaluation of unique characteristics of defects in the weld zone. In quantitative fractal feature extraction, feature values of 3.848 in the case of part of head(crack) and 4.102 in the case of part of web(side hole) and 3.711 in the case of part of flange(crack) were proposed on the basis of fractal dimensions. Proposed attractor feature extraction in this study can enhance the precision rate of ultrasonic evaluation for defect signals of rail weld zone such as side hole and crack.

  • PDF

Defect evaluations of weld zone in rails using attractor analysis (어트랙터 해석을 이용한 레일 용접부의 결함 평가)

  • 민경주;나성훈;권성태;임성진;윤인식
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.87-95
    • /
    • 1998
  • This study proposes the analysis and evaluation method of time series ultrasonic signal using the attractor analysis. Features extracted from time series signal analyze quantitatively characteristics of welding defects. For this purpose, analysis objective in this study is fractal dimension and attractor Quadrant feature. Trajectory changes in the attractor indicated that even the same type of defects carried substantial difference in fractal characteristics resulting from distance shifts such as parts of head and flange. Such differences in characteristics of weld defects enables the evaluation of unique features of defects in the weld zone. In quantitative fractal feature extraction, feature values of 3.848 in the case of part of head(crack) and 4.102 in the case of part of web(side hale) and 3.711 in the case of part of flange(crack) were proposed on the basis of fractal dimensions. Proposed attractor feature extraction in this study can enhance the precision rate of ultrasonic evalaution for defect signals of rail weld zone such as side hole and crack.

  • PDF

Speech Query Recognition for Tamil Language Using Wavelet and Wavelet Packets

  • Iswarya, P.;Radha, V.
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1135-1148
    • /
    • 2017
  • Speech recognition is one of the fascinating fields in the area of Computer science. Accuracy of speech recognition system may reduce due to the presence of noise present in speech signal. Therefore noise removal is an essential step in Automatic Speech Recognition (ASR) system and this paper proposes a new technique called combined thresholding for noise removal. Feature extraction is process of converting acoustic signal into most valuable set of parameters. This paper also concentrates on improving Mel Frequency Cepstral Coefficients (MFCC) features by introducing Discrete Wavelet Packet Transform (DWPT) in the place of Discrete Fourier Transformation (DFT) block to provide an efficient signal analysis. The feature vector is varied in size, for choosing the correct length of feature vector Self Organizing Map (SOM) is used. As a single classifier does not provide enough accuracy, so this research proposes an Ensemble Support Vector Machine (ESVM) classifier where the fixed length feature vector from SOM is given as input, termed as ESVM_SOM. The experimental results showed that the proposed methods provide better results than the existing methods.

Robust Feature Extraction for Voice Activity Detection in Nonstationary Noisy Environments (음성구간검출을 위한 비정상성 잡음에 강인한 특징 추출)

  • Hong, Jungpyo;Park, Sangjun;Jeong, Sangbae;Hahn, Minsoo
    • Phonetics and Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.11-16
    • /
    • 2013
  • This paper proposes robust feature extraction for accurate voice activity detection (VAD). VAD is one of the principal modules for speech signal processing such as speech codec, speech enhancement, and speech recognition. Noisy environments contain nonstationary noises causing the accuracy of the VAD to drastically decline because the fluctuation of features in the noise intervals results in increased false alarm rates. In this paper, in order to improve the VAD performance, harmonic-weighted energy is proposed. This feature extraction method focuses on voiced speech intervals and weighted harmonic-to-noise ratios to determine the amount of the harmonicity to frame energy. For performance evaluation, the receiver operating characteristic curves and equal error rate are measured.

Target Speech Segregation Using Non-parametric Correlation Feature Extraction in CASA System (CASA 시스템의 비모수적 상관 특징 추출을 이용한 목적 음성 분리)

  • Choi, Tae-Woong;Kim, Soon-Hyub
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.79-85
    • /
    • 2013
  • Feature extraction of CASA system uses time continuity and channel similarity and makes correlogram of auditory elements for the use. In case of using feature extraction with cross correlation coefficient for channel similarity, it has much computational complexity in order to display correlation quantitatively. Therefore, this paper suggests feature extraction method using non-parametric correlation coefficient in order to reduce computational complexity when extracting the feature and tests to segregate target speech by CASA system. As a result of measuring SNR (Signal to Noise Ratio) for the performance evaluation of target speech segregation, the proposed method shows a slight improvement of 0.14 dB on average over the conventional method.

ANALYSIS OF ECG SIGNAL USING MICROCOMPUTER (마이크로 컴퓨터를 이용한 심전도 신호해석)

  • Kim, Y.S.;Jhon, S.C.;Lee, E.S.;Min, H.K.;Hong, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1268-1270
    • /
    • 1987
  • This paper suggests several simple and efficient algorithms for detecting the ECG Signal by Microcomputer's software. The ECG signal detection was performed with the Linear Approximation and the feature extraction. The linear transformation approximates a given waveform by a piecewise-linear function with a preset upper bound on the absolute error between the functional values of the original function and the approximation. And the feature extraction from ECG signal, the features are different wave amplitudes, durations and interwave intervals, used the slope, the amplitude and time-Duration of ECG Sinal.

  • PDF

An Analysis Method of Strange Attractor for the Feature Extraction (음성 특징 추출을 위한 스트레인지 어트랙터의 분석 방법)

  • Kim, Tae-Sik
    • Speech Sciences
    • /
    • v.9 no.2
    • /
    • pp.147-155
    • /
    • 2002
  • In the area of speech processing, raw signals used to be presented into 2D format. However, such kind of presentation methods have limitation to extract characteristics from the signal because of the presentation method. Generally, not much information can be detected from the 2D signal. Strange attractor in the field of chaos theory provides a 3D presentation method. In the area of recognition problem, signal presentation method is very important because good features can be detected from a good presentation. This paper discusses a new feature extraction method that extracts features from a cycle of the strange attractor. A neural network is used to check whether the method extracts suitable features or not. The result shows very good points that can be applied to some areas of signal processing.

  • PDF

Construction fo chaos simulator for ultrasonic pattern recognition evaluation of weld zone in austenitic stainless steel 304 (오스테나이트계 스테인리스강 304 용접부의 초음파 형상 인식 평가를 위한 카오스 시뮬레이터의 구축)

  • Yi, Won;Yun, In-Sik;Chang, Young-Kwon
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.108-118
    • /
    • 1998
  • This study proposes th analysis and evaluation method of time series ultrasonic signal using the chaos feature extraction for ultrasonic pattern recognition. Features extracted from time series data using the chaos time series signal analyze quantitatively weld defects. For this purpose, analysis objective in this study is fractal dimension and Lyapunov exponent. Trajectory changes in the strange attractor indicated that even same type of defects carried substantial difference in chaosity resulting from distance shifts such as 0.5 and 1.0 skip distance. Such differences in chaosity enables the evaluation of unique features of defects in the weld zone. In quantitative chaos feature extraction, feature values of 4.511 and 0.091 in the case of side hole and 4.539 and 0.115 in the case of vertical hole were proposed on the basis of fractal dimension and Lyapunov exponent. Proposed chaos feature extraction in this study can enhances ultrasonic pattern recognition results from defect signals of weld zone such as side hole and vertical hole.

  • PDF

Chaoticity Evaluation of Ultrasonic Signals in Welding Defects by 6dB Drop Method (6dB Drop법에 의한 용접 결함 초음파 신호의 카오스성 평가)

  • Yi, Won;Yun, In-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1065-1074
    • /
    • 1999
  • This study proposes the analysis and evaluation method of time series ultrasonic signal using the chaotic feature extraction for ultrasonic pattern recognition. Features extracted from time series data using the chaotic time series signal analysis quantitatively welding defects. For this purpose analysis objective in this study is fractal dimension and Lyapunov exponent. Trajectory changes in the strange attractor indicated that even same type of defects carried substantial difference in chaoticity resulting from distance shills such as 0.5 and 1.0 skip distance. Such differences in chaoticity enables the evaluation of unique features of defects in the weld zone. In experiment fractal(correlation) dimension and Lyapunov exponent extracted from 6dB ultrasonic defect signals of weld zone showed chaoticity. In quantitative chaotic feature extraction, feature values(mean values) of 4.2690 and 0.0907 in the case of porosity and 4.2432 and 0.0888 in the case of incomplete penetration were proposed on the basis of fractal dimension and Lyapunov exponent. Proposed chaotic feature extraction in this study enhances ultrasonic pattern recognition results from defect signals of weld zone such as vertical hole.