• 제목/요약/키워드: Feature Signal Extraction

검색결과 346건 처리시간 0.022초

최대 추정 기법과 최소 평균 자승 알고리즘을 이용한 초음파 비파괴검사 신호 분류법 (Classification of Ultrasonic NDE Signals Using the Expectation Maximization (EM) and Least Mean Square (LMS) Algorithms)

  • 김대원
    • 비파괴검사학회지
    • /
    • 제25권1호
    • /
    • pp.27-35
    • /
    • 2005
  • 초음파 검사 방법은 여러 가지 물질들의 흠집이나 틈새, 티끌 등을 감지해내는데 널리 쓰이고 있다. 그 중 초음파 신호를 분석하는 절차는 전체의 신호처리 과정에서 아주 중요한 역할을 담당하고 있다. 이 논문은 최소평균 제곱 (LMS) 알고리즘을 이용하여 핵 전력 발전소에서 쓰이는 증기 발생기 튜브로부터 감지된 초음파 비파괴검사 신호를 분류 해내는 것에 관한 것이다. 이 초음파 신호는 튜브내의 흠집이나 틈새로부터 감지된 신호일수도 있고 또는 튜브 내의 침전물에 의해서 발생된 신호일 수도 있는데 이 두 가지 신호는 매우 유사하기 때문에 반드시 분류를 해내어 침전물에 의한 신호일 경우는 무방하지만 흠집이나 갈라진 틈새에서 나오는 신호일 경우는 더 이상의 오염이나 사고 등을 방지하기 위해 수리 또는 교체 등의 후속 조치로 이어져야 한다. 이러한 절차를 밟기 위하여 증기 발생기 튜브의 내부에서의 초음파 센서로부터 증기 발생기 튜브 사이의 거리를 측정하는데 모델링 기법에 기반한 deconvolution 방법이 제시되었으며 이 방법은 space alternating generalized expectation maximization (SAGE) 알고리즘을 이차원 미분 파라미터인 Hessian의 사용으로 인하여 수렴 속도가 빠른 Newton-Raphson 알고리즘과 함께 병행 사용하여 초음파 신호의 초점 도달 시간과 그 크기를 측정하여 초점 도달 거리에 따라 두 종류의 신호를 분류, 차별화 하는 기법이다. 이 알고리즘을 이용하여 흠집이나 틈새로부터 나온 신호일 경우와 퇴적물에 의해 나온 신호일 경우로 분류되었고 그 결과가 이 논문에 제시되었다.

시계열 신호 통계량 기반 캐비테이션 신호 탐지 (Cavitation signal detection based on time-series signal statistics)

  • 양해상;최하민;이석규;성우제
    • 한국음향학회지
    • /
    • 제43권4호
    • /
    • pp.400-405
    • /
    • 2024
  • 선박 프로펠러 캐비테이션 소음이 발생하면 수중 방사 소음의 수준이 급격히 상승하는데, 특히 함정의 경우에 피탐지 확률이 증가해 치명적인 위협 요인이 될 수 있다. 따라서 함정의 생존성 향상을 위하여 캐비테이션 신호를 정확하고 신속하게 판단하는 것이 매우 중요한데, 종래에는 센서로 계측한 음압/진동 준위가 기준값 이상이면 캐비테이션 발생으로 판단하는 기술과 데몬 기법을 통해 캐비테이션 발생 여부를 판별하는 방법이 주로 수행되었다. 그러나 이와 관련된 기술은 캐비테이션의 발생 현상에 대한 물리적 이해와 사용자의 주관적 기준을 기반으로 수행되며 여러 절차를 거치기 때문에 캐비테이션 신호를 조기에 자동으로 인식하는 기법의 개발이 필요하다. 본 논문에서는 선체에 부착된 음향 센서를 이용하여 계측된 음향 신호로부터 캐비테이션 신호의 특징을 반영한 간단한 통계량 기반 특징을 추출하고 이로부터 캐비테이션 발생 여부를 자동으로 판단하는 알고리즘을 제안한다. 제안된 기법의 성능은 센서 수와 모형 시험 조건에 따라 평가하는데, 단일 센서로 계측된 신호에 캐비테이션의 특징을 충분히 반영하여 훈련하면 캐비테이션 신호의 발생 여부를 판단 가능함을 확인했다.

EIS 기반 전압신호 분석을 통한 당뇨병 진단 가능성 평가 (Diagnosis of Diabetes Using Voltage Analysis Based on EIS (Electro Interstitial Scan))

  • 배장한;김수찬;카니티카 케오칸네트;전민호;김재욱
    • 전자공학회논문지
    • /
    • 제53권11호
    • /
    • pp.114-122
    • /
    • 2016
  • EIS (Electro interstitial scan, 전기체간스캔법)는 전극을 이용해 미세전류를 인체에 인가하고 그에 따른 전기적 반응을 분석하여 생리적인 정보를 얻는 방법으로, 비침습적이고 간단한 검사가 가능하다는 장점이 있다. 특히 당뇨병 진단을 위한 스크린용으로 적합하다는 연구들이 진행되어 왔으나 대부분 진단 원리에 대한 구체적인 논의가 이루어지지 않았다. 본 연구에서는 EIS 방법이 당뇨병 스크리닝 및 임상에 유용하게 활용될 수 있을지 분석해 보기위해 당뇨병 환자와 정상인을 대상으로 EIS 장비의 원 신호인 전압 변동 데이터를 특정경로에서 측정하였다. 전압 신호의 특징점을 추출하고 두 그룹 사이의 AUC (Area under the curve)를 계산한 결과 7개의 변수들이 60% 이상의 분류 정확도를 보였다. 또한 이 변수들을 k-NN 분류기로 학습한 결과, 왼쪽 손에서의 전압 변동 크기를 기준으로 분석했을 때 분류 정확도를 76.2%까지 높일 수 있었다. EIS 기반의 전압신호 분석법으로 비침습적인 당뇨병 스크리닝의 가능성을 보였다.

수동형 멀리미터파 영상과 가시 영상과의 정합 및 융합에 관한 연구 (Image Registration and Fusion between Passive Millimeter Wave Images and Visual Images)

  • 이형;이동수;염석원;손정영;블라드미르 구신;김신환
    • 한국통신학회논문지
    • /
    • 제36권6C호
    • /
    • pp.349-354
    • /
    • 2011
  • 수동형(passive) 밀리미터파(millimeter wave) 영상은 의복 등에 은닉된 물체의 탐지가 가능하며 악천후의 상황에서도 감쇄도(attenuation)가 낮아 식별이 가능한 영상을 획득할 수 있다. 그러나 영상 시스템의 공간 해상도(spatial resolution)가 낮고 수신신호가 미약하여 잡음의 영향이 크고 시스템의 온도 분해능(temperature resolution)에 따라 영상의 질이 달라진다. 본 논문에서는 수동형 밀리미터파 영상과 일반 카메라부터 획득되는 영상의 정합(registration)과 은닉된 물체의 시각화를 위한 영상 융합(fusion)을 연구한다. 영상의 정합은 추출된 몸체 경계 간의 상호상관도를 최대로 하는 어파인 변환(affine transform)으로 수행되며 융합은 영상 분해를 위한 이산 웨이블릿 변환(discrete wavelet transform), 융합 법칙(fusion rule), 영상을 복원하기 위한 역 이산 웨이블릿 변환의 3단계로 구성된다. 실험에서는 수동형 밀리미터파 영상 시스템에 의해 칼, 도끼, 화장품, 그리고 휴대폰과 같은 또는 비금속의 다양한 물체가 탐지됨을 보인다. 또한 정합과 융합된 영상의 결과로부터 가시 영상으로부터 얻은 얼굴과 의복 등의 대상자의 신원정보와 밀리미터파 영상으로부터 획득한 은닉된 물체의 정보를 동시에 시각화할 수 있음을 보인다.

관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템 (Automatic gasometer reading system using selective optical character recognition)

  • 이교혁;김태연;김우주
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.1-25
    • /
    • 2020
  • 본 연구에서는 모바일 기기를 이용하여 획득한 가스계량기 사진을 서버로 전송하고, 이를 분석하여 가스 사용량 및 계량기 기물 번호를 인식함으로써 가스 사용량에 대한 과금을 자동으로 처리할 수 있는 응용 시스템 구조를 제안하고자 한다. 모바일 기기는 일반인들이 사용하는 스마트 폰에 준하는 기기를 사용하였으며, 획득한 이미지는 가스 공급사의 사설 LTE 망을 통해 서버로 전송된다. 서버에서는 전송받은 이미지를 분석하여 가스계량기 기물 번호 및 가스 사용량 정보를 추출하고, 사설 LTE 망을 통해 분석 결과를 모바일 기기로 회신한다. 일반적으로 이미지 내에는 많은 종류의 문자 정보가 포함되어 있으나, 본 연구의 응용분야인 가스계량기 자동 검침과 같이 많은 종류의 문자 정보 중 특정 형태의 문자 정보만이 유용한 분야가 존재한다. 본 연구의 응용분야 적용을 위해서는 가스계량기 사진 내의 많은 문자 정보 중에서 관심 대상인 기물 번호 및 가스 사용량 정보만을 선별적으로 검출하고 인식하는 관심 문자열 인식 기술이 필요하다. 관심 문자열 인식을 위해 CNN (Convolutional Neural Network) 심층 신경망 기반의 객체 검출 기술을 적용하여 이미지 내에서 가스 사용량 및 계량기 기물번호의 영역 정보를 추출하고, 추출된 문자열 영역 각각에 CRNN (Convolutional Recurrent Neural Network) 심층 신경망 기술을 적용하여 문자열 전체를 한 번에 인식하였다. 본 연구에서 제안하는 관심문자열 기술 구조는 총 3개의 심층 신경망으로 구성되어 있다. 첫 번째는 관심 문자열 영역을 검출하는 합성곱신경망이고, 두 번째는 관심 문자열 영역 내의 문자열 인식을 위해 영역 내의 이미지를 세로 열 별로 특징 추출하는 합성곱 신경망이며, 마지막 세 번째는 세로 열 별로 추출된 특징 벡터 나열을 문자열로 변환하는 시계열 분석 신경망이다. 관심 문자열은 12자리 기물번호 및 4 ~ 5 자리 사용량이며, 인식 정확도는 각각 0.960, 0.864 이다. 전체 시스템은 Amazon Web Service 에서 제공하는 클라우드 환경에서 구현하였으며 인텔 제온 E5-2686 v4 CPU 및 Nvidia TESLA V100 GPU를 사용하였다. 1일 70만 건의 검침 요청을 고속 병렬 처리하기 위해 마스터-슬레이브 처리 구조를 채용하였다. 마스터 프로세스는 CPU 에서 구동되며, 모바일 기기로 부터의 검침 요청을 입력 큐에 저장한다. 슬레이브 프로세스는 문자열 인식을 수행하는 심층 신경망으로써, GPU에서 구동된다. 슬레이브 프로세스는 입력 큐에 저장된 이미지를 기물번호 문자열, 기물번호 위치, 사용량 문자열, 사용량 위치 등으로 변환하여 출력 큐에 저장한다. 마스터 프로세스는 출력 큐에 저장된 검침 정보를 모바일 기기로 전달한다.

주성분분석을 이용한 토끼 망막 신경절세포의 활동전위 파형 분류 (PCA­based Waveform Classification of Rabbit Retinal Ganglion Cell Activity)

  • 진계환;조현숙;이태수;구용숙
    • 한국의학물리학회지:의학물리
    • /
    • 제14권4호
    • /
    • pp.211-217
    • /
    • 2003
  • 주성분분석은 잘 알려진 데이터 분석 방법으로써 높은 차원의 데이터를 낮은 차원의 데이터로 표현하는데 효과적이어서 얼굴인식, 데이터 압축 등에 이용되고 있다. 주성분분석을 하게 되면 원 데이터의 공분산 행렬로부터 정규직교한 고유벡터와 해당하는 고유치를 얻게 되고 그 중 큰 값을 가지는 고유벡터 들을 선택하여 선형 변환함으로써 데이터의 차원을 줄일 수 있게 된다. 망막에 빛 자극이 인가되면 시세포 층에서 전기신호로 변환된 후 복잡한 신경회로를 거쳐 최종적으로 신경절세포 층에서 활동전위의 형태로 출력되게 된다. 본 연구에서는 다채널전극을 사용하여 여러 개 망막 신경절세포로부터 유래되는 활동전위를 기록한 후 개개의 신호를 구분하는 과정을 거치고, 이어서 그 신호를 만들어 내는 각 뉴론들끼리의 시간적, 공간적 흥분발사 패턴을 이해함으로써 궁극적으로 시각정보 인코딩 기전을 밝히려는 연구 목표하에 그 첫 단계로서 망막 신경절세포의 활동전위를 기록한 후 분류하는 과정을 성공적으로 수행하였기에 그 내용을 서술하고자 한다. 망막에서 기록되는 신경절세포 활동전위는 불규칙하고 확률적이기 때문에 주성분분석을 통하여 그 유형을 분류할 수 있었다. 토끼 눈으로부터 망막을 박리하여 망막조각을 얻은 후 신경절세포 층이 전극표면을 향하도록 전극에 부착하였다. 8${\times}$8의 microelectrode array (MEA)를 전극으로 사용하였고, 증폭기는 MEA 60 system을 사용하여 신경절세포 활동전위를 기록하였다. 활동전위 기록 후 파형 분류를 하였다. 잡음이 섞여있는 기록으로부터 신호를 검출하기 위하여, 잡음역치($\pm$3$\sigma$)를 설정하였다. 역치를 넘는 파형 만을 획득한 후 주성분분석을 통해 각 파형의 첫 번째 주성분, 두 번째 주성분을 계산하여 2차원 평면에 투사함으로써 몇 개의 의미있는 클러스터를 얻었다. 이 클러스터는 곧 각 신경절세포에서 유래되는 파형을 반영하므로 주성분분석을 통하여 망막 신경절세포의 활동전위를 각 세포별로 분류할 수 있음을 확인하였다.

  • PDF