• Title/Summary/Keyword: Feature Signal Extraction

Search Result 346, Processing Time 0.039 seconds

Fault Diagnosis for Rotating Machine Using Feature Extraction and Minimum Detection Error Algorithm (특징 추출과 검출 오차 최소화 알고리듬을 이용한 회전기계의 결함 진단)

  • Chong, Ui-pil;Cho, Sang-jin;Lee, Jae-yeal
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.27-33
    • /
    • 2006
  • Fault diagnosis and condition monitoring for rotating machines are important for efficiency and accident prevention. The process of fault diagnosis is to extract the feature of signals and to classify each state. Conventionally, fault diagnosis has been developed by combining signal processing techniques for spectral analysis and pattern recognition, however these methods are not able to diagnose correctly for certain rotating machines and some faulty phenomena. In this paper, we add a minimum detection error algorithm to the previous method to reduce detection error rate. Vibration signals of the induction motor are measured and divided into subband signals. Each subband signal is processed to obtain the RMS, standard deviation and the statistic data for constructing the feature extraction vectors. We make a study of the fault diagnosis system that the feature extraction vectors are applied to K-means clustering algorithm and minimum detection error algorithm.

Optimal EEG Feature Extraction using DWT for Classification of Imagination of Hands Movement

  • Chum, Pharino;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.786-791
    • /
    • 2011
  • An optimal feature selection and extraction procedure is an important task that significantly affects the success of brain activity analysis in brain-computer interface (BCI) research area. In this paper, a novel method for extracting the optimal feature from electroencephalogram (EEG) signal is proposed. At first, a student's-t-statistic method is used to normalize and to minimize statistical error between EEG measurements. And, 2D time-frequency data set from the raw EEG signal was extracted using discrete wavelet transform (DWT) as a raw feature, standard deviations and mean of 2D time-frequency matrix were extracted as a optimal EEG feature vector along with other basis feature of sub-band signals. In the experiment, data set 1 of BCI competition IV are used and classification using SVM to prove strength of our new method.

Voice Recognition Performance Improvement using the Convergence of Voice signal Feature and Silence Feature Normalization in Cepstrum Feature Distribution (음성 신호 특징과 셉스트럽 특징 분포에서 묵음 특징 정규화를 융합한 음성 인식 성능 향상)

  • Hwang, Jae-Cheon
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.5
    • /
    • pp.13-17
    • /
    • 2017
  • Existing Speech feature extracting method in speech Signal, there are incorrect recognition rates due to incorrect speech which is not clear threshold value. In this article, the modeling method for improving speech recognition performance that combines the feature extraction for speech and silence characteristics normalized to the non-speech. The proposed method is minimized the noise affect, and speech recognition model are convergence of speech signal feature extraction to each speech frame and the silence feature normalization. Also, this method create the original speech signal with energy spectrum similar to entropy, therefore speech noise effects are to receive less of the noise. the performance values are improved in signal to noise ration by the silence feature normalization. We fixed speech and non speech classification standard value in cepstrum For th Performance analysis of the method presented in this paper is showed by comparing the results with CHMM HMM, the recognition rate was improved 2.7%p in the speech dependent and advanced 0.7%p in the speech independent.

Parts-Based Feature Extraction of Spectrum of Speech Signal Using Non-Negative Matrix Factorization

  • Park, Jeong-Won;Kim, Chang-Keun;Lee, Kwang-Seok;Koh, Si-Young;Hur, Kang-In
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.209-212
    • /
    • 2003
  • In this paper, we proposed new speech feature parameter through parts-based feature extraction of speech spectrum using Non-Negative Matrix Factorization (NMF). NMF can effectively reduce dimension for multi-dimensional data through matrix factorization under the non-negativity constraints, and dimensionally reduced data should be presented parts-based features of input data. For speech feature extraction, we applied Mel-scaled filter bank outputs to inputs of NMF, than used outputs of NMF for inputs of speech recognizer. From recognition experiment result, we could confirm that proposed feature parameter is superior in recognition performance than mel frequency cepstral coefficient (MFCC) that is used generally.

Speech Recognition Performance Improvement using Gamma-tone Feature Extraction Acoustic Model (감마톤 특징 추출 음향 모델을 이용한 음성 인식 성능 향상)

  • Ahn, Chan-Shik;Choi, Ki-Ho
    • Journal of Digital Convergence
    • /
    • v.11 no.7
    • /
    • pp.209-214
    • /
    • 2013
  • Improve the recognition performance of speech recognition systems as a method for recognizing human listening skills were incorporated into the system. In noisy environments by separating the speech signal and noise, select the desired speech signal. but In terms of practical performance of speech recognition systems are factors. According to recognized environmental changes due to noise speech detection is not accurate and learning model does not match. In this paper, to improve the speech recognition feature extraction using gamma tone and learning model using acoustic model was proposed. The proposed method the feature extraction using auditory scene analysis for human auditory perception was reflected In the process of learning models for recognition. For performance evaluation in noisy environments, -10dB, -5dB noise in the signal was performed to remove 3.12dB, 2.04dB SNR improvement in performance was confirmed.

A Study on Signal Feature Extraction of Partial Discharge Types Using Discrete Wavelet Transform Technique (이산웨이블렛 변환기법을 이용한 부분방전종류의 신호특징추출에 관한연구)

  • Park, Jae-Jun;Jeon, Byung-Hoon;Kim, Jin-Seong;Jeon, Hyun-Gu;Baek, Kwan-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.170-176
    • /
    • 2002
  • In this papers, we proposed the feature extraction method due to partial discharge type of transformers. For wavelet transform, Daubechie's filter is used, we can obtain wavelet coefficients which is used to extract feature of statistical parameters (maximum value, average value, dispersion, skewness, kurtosis) about acoustic emission signal generated from each partial discharge type. The defects which could occur in a transformer were simulated by using needle-plane electrode, IEC electrode and Void electrode. Also, these coefficients are used to identify signal of partial discharge type electrode fault in transformer. As a result, from compare of acoustic emission amplitude and acoustic average value, we are obtained results of IEC electrode> Void electrode> Needle-Plane electrode. otherwise, In case of skewness and kurtosis, we are obtained results of Needle-Plane electrode electrode> Void electrode> IEC electrode.

  • PDF

Pulse-Coded Train and QRS Feature extraction Using Linear Prediction (선형예측법을 이용한 심전도 신호의 부호화와 특징추출)

  • Song, Chul-Gyu;Lee, Byung-Chae;Jeong, Kee-Sam;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.175-178
    • /
    • 1992
  • This paper proposes a method called linear prediction (a high performant technique in digital speech processing) for analyzing digital ECG signals. There are several significant properties indicating that ECG signals have an important feature in the residual error signal obtained after processing by Durbin's linear prediction algorithm. The ECG signal classification puts an emphasis on the residual error signal. For each ECG's QRS complex. the feature for recognition is obtained from a nonlinear transformation which transforms every residual error signal to set of three states pulse-cord train relative to the original ECG signal. The pulse-cord train has the advantage of easy implementation in digital hardware circuits to achive automated ECG diagnosis. The algorithm performs very well feature extraction in arrythmia detection. Using this method, our studies indicate that the PVC (premature ventricular contration) detection has a at least 90 percent sensityvity for arrythmia data.

  • PDF

Effective Feature Extraction in the Individual frequency Sub-bands for Speech Recognition (음성인식을 위한 주파수 부대역별 효과적인 특징추출)

  • 지상문
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.598-603
    • /
    • 2003
  • This paper presents a sub-band feature extraction approach in which the feature extraction method in the individual frequency sub-bands is determined in terms of speech recognition accuracy. As in the multi-band paradigm, features are extracted independently in frequency sub-regions of the speech signal. Since the spectral shape is well structured in the low frequency region, the all pole model is effective for feature extraction. But, in the high frequency region, the nonparametric transform, discrete cosine transform is effective for the extraction of cepstrum. Using the sub-band specific feature extraction method, the linguistic information in the individual frequency sub-bands can be extracted effectively for automatic speech recognition. The validity of the proposed method is shown by comparing the results of speech recognition experiments for our method with those obtained using a full-band feature extraction method.

Patterns Recognition Using Translation-Invariant Wavelet Transform (위치이동에 무관한 웨이블릿 변환을 이용한 패턴인식)

  • Kim, Kuk-Jin;Cho, Seong-Won;Kim, Jae-Min;Lim, Cheol-Su
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.281-286
    • /
    • 2003
  • Wavelet Transform can effectively represent the local characteristics of a signal in the space-frequency domain. However, the feature vector extracted using wavelet transform is not translation invariant. This paper describes a new feature extraction method using wavelet transform, which is translation-invariant. Based on this translation-invariant feature extraction, the iris recognition method, based on this feature extraction method, is robust to noises. Experimentally, we show that the proposed method produces super performance in iris recognition.

Signal Processing Technology for Rotating Machinery Fault Signal Diagnosis (회전기계 결함신호 진단을 위한 신호처리 기술 개발)

  • Choi, Byeong-Keun;Ahn, Byung-Hyun;Kim, Yong-Hwi;Lee, Jong-Myeong;Lee, Jeong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.331-337
    • /
    • 2013
  • Acoustic Emission technique is widely applied to develop the early fault detection system, and the problem about a signal processing method for AE signal is mainly focused on. In the signal processing method, envelope analysis is a useful method to evaluate the bearing problems and Wavelet transform is a powerful method to detect faults occurred on rotating machinery. However, exact method for AE signal is not developed yet. Therefore, in this paper two methods which are Hilbert transform and DET for feature extraction. In addition, we evaluate the classification performance with varying the parameter from 2 to 15 for feature selection DET, 0.01 to 1.0 for the RBF kernel function of SVR, and the proposed algorithm achieved 94% classification accuracy with the parameter of the RBF 0.08, 12 feature selection.

  • PDF