• 제목/요약/키워드: Feature Set

검색결과 1,239건 처리시간 0.028초

파라메트릭 접근방법에 의한 특징형상을 이용한 모델링 (A Parametric Approach to Feature-based Modeling)

  • 이재열;김광수
    • 한국CDE학회논문집
    • /
    • 제1권3호
    • /
    • pp.242-256
    • /
    • 1996
  • Although feature-based design is a promising approach to fully integrating CAD/CAM, current feature-based design approaches seldom provide methodologies to easily define and design features. This paper proposes a new approach to integrating parametric design with feature-based design to overcome those limitations by globally decomposing a design into a set of features and locally defining and positioning each feature by geometric constraints. Each feature is defined as a parametric shape which consists of a feature section, attributes, and a set of constraints. The generalized sketching and sweeping techniques are used to simplify the process of designing features. The proposed approach is knowledge-based and its computational efficiency in geometric reasoning is improved greatly. Parametrically designed features not only have the advantage of allowing users to efficiently perform design changes, but also provide designers with a natural design environment in which they can do their work more naturally and creatively.

  • PDF

감성 인식을 위한 강화학습 기반 상호작용에 의한 특징선택 방법 개발 (Reinforcement Learning Method Based Interactive Feature Selection(IFS) Method for Emotion Recognition)

  • 박창현;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제12권7호
    • /
    • pp.666-670
    • /
    • 2006
  • This paper presents the novel feature selection method for Emotion Recognition, which may include a lot of original features. Specially, the emotion recognition in this paper treated speech signal with emotion. The feature selection has some benefits on the pattern recognition performance and 'the curse of dimension'. Thus, We implemented a simulator called 'IFS' and those result was applied to a emotion recognition system(ERS), which was also implemented for this research. Our novel feature selection method was basically affected by Reinforcement Learning and since it needs responses from human user, it is called 'Interactive feature Selection'. From performing the IFS, we could get 3 best features and applied to ERS. Comparing those results with randomly selected feature set, The 3 best features were better than the randomly selected feature set.

Effective Multi-label Feature Selection based on Large Offspring Set created by Enhanced Evolutionary Search Process

  • Lim, Hyunki;Seo, Wangduk;Lee, Jaesung
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권9호
    • /
    • pp.7-13
    • /
    • 2018
  • Recent advancement in data gathering technique improves the capability of information collecting, thus allowing the learning process between gathered data patterns and application sub-tasks. A pattern can be associated with multiple labels, demanding multi-label learning capability, resulting in significant attention to multi-label feature selection since it can improve multi-label learning accuracy. However, existing evolutionary multi-label feature selection methods suffer from ineffective search process. In this study, we propose a evolutionary search process for the task of multi-label feature selection problem. The proposed method creates large set of offspring or new feature subsets and then retains the most promising feature subset. Experimental results demonstrate that the proposed method can identify feature subsets giving good multi-label classification accuracy much faster than conventional methods.

Set Covering 기반의 대용량 오믹스데이터 특징변수 추출기법 (Set Covering-based Feature Selection of Large-scale Omics Data)

  • 마정우;안기동;김광수;류홍서
    • 한국경영과학회지
    • /
    • 제39권4호
    • /
    • pp.75-84
    • /
    • 2014
  • In this paper, we dealt with feature selection problem of large-scale and high-dimensional biological data such as omics data. For this problem, most of the previous approaches used simple score function to reduce the number of original variables and selected features from the small number of remained variables. In the case of methods that do not rely on filtering techniques, they do not consider the interactions between the variables, or generate approximate solutions to the simplified problem. Unlike them, by combining set covering and clustering techniques, we developed a new method that could deal with total number of variables and consider the combinatorial effects of variables for selecting good features. To demonstrate the efficacy and effectiveness of the method, we downloaded gene expression datasets from TCGA (The Cancer Genome Atlas) and compared our method with other algorithms including WEKA embeded feature selection algorithms. In the experimental results, we showed that our method could select high quality features for constructing more accurate classifiers than other feature selection algorithms.

Opcode와 IAT를 활용한 PE 파일 악성코드 탐지 (PE file malware detection using opcode and IAT)

  • 이정훈;강아름
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.103-106
    • /
    • 2023
  • 코로나 팬데믹 사태로 인해 업무환경이 재택근무를 하는 환경으로 바뀌고 악성코드의 변종 또한 빠르게 발전하고 있다. 악성코드를 분석하고 백신 프로그램을 만들면 새로운 변종 악성코드가 생기고 변종에 대한 백신프로그램이 만들어 질 때까지 변종된 악성코드는 사용자에게 위협이 된다. 본 연구에서는 머신러닝 알고리즘을 사용하여 악성파일 여부를 예측하는 방법을 제시하였다. 일반적인 악성코드의 구조를 갖는 Portable Executable 구조 파일을 파이썬의 LIEF 라이브러리를 사용하여 Certificate, Imports, Opcode 등 3가지 feature에 대해 정적분석을 하였다. 학습 데이터로는 정상파일 320개와 악성파일 530개를 사용하였다. Certificate는 hasSignature(디지털 서명정보), isValidcertificate(디지털 서명의 유효성), isNotExpired(인증서의 유효성)의 feature set을 사용하고, Imports는 Import Address Table의 function 빈도수를 비교하여 feature set을 구축하였다. Opcode는 tri-gram으로 추출하여 빈도수를 비교하여 feature set을 구축하였다. 테스트 데이터로는 정상파일 360개 악성파일 610개를 사용하였으며 Feature set을 사용하여 random forest, decision tree, bagging, adaboost 등 4가지 머신러닝 알고리즘을 대상으로 성능을 비교하였고, bagging 알고리즘에서 약 0.98의 정확도를 보였다.

  • PDF

An Active Contour Approach to Extract Feature Regions from Triangular Meshes

  • Min, Kyung-Ha;Jung, Moon-Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권3호
    • /
    • pp.575-591
    • /
    • 2011
  • We present a novel active contour-based two-pass approach to extract smooth feature regions from a triangular mesh. In the first pass, an active contour formulated in level-set surfaces is devised to extract feature regions with rough boundaries. In the second pass, the rough boundary curve is smoothed by minimizing internal energy, which is derived from its curvature. The separation of the extraction and smoothing process enables us to extract feature regions with smooth boundaries from a triangular mesh without user's initial model. Furthermore, smooth feature curves can also be obtained by skeletonizing the smooth feature regions. We tested our algorithm on facial models and proved its excellence.

FIGURE ALPHABET HYPOTHESIS INSPIRED NEURAL NETWORK RECOGNITION MODEL

  • Ohira, Ryoji;Saiki, Kenji;Nagao, Tomoharu
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.547-550
    • /
    • 2009
  • The object recognition mechanism of human being is not well understood yet. On research of animal experiment using an ape, however, neurons that respond to simple shape (e.g. circle, triangle, square and so on) were found. And Hypothesis has been set up as human being may recognize object as combination of such simple shapes. That mechanism is called Figure Alphabet Hypothesis, and those simple shapes are called Figure Alphabet. As one way to research object recognition algorithm, we focused attention to this Figure Alphabet Hypothesis. Getting idea from it, we proposed the feature extraction algorithm for object recognition. In this paper, we described recognition of binarized images of multifont alphabet characters by the recognition model which combined three-layered neural network in the feature extraction algorithm. First of all, we calculated the difference between the learning image data set and the template by the feature extraction algorithm. The computed finite difference is a feature quantity of the feature extraction algorithm. We had it input the feature quantity to the neural network model and learn by backpropagation (BP method). We had the recognition model recognize the unknown image data set and found the correct answer rate. To estimate the performance of the contriving recognition model, we had the unknown image data set recognized by a conventional neural network. As a result, the contriving recognition model showed a higher correct answer rate than a conventional neural network model. Therefore the validity of the contriving recognition model could be proved. We'll plan the research a recognition of natural image by the contriving recognition model in the future.

  • PDF

감정 인식을 위한 Interactive Feature Selection(IFS) 알고리즘 (Interactive Feature selection Algorithm for Emotion recognition)

  • 양현창;김호덕;박창현;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.647-652
    • /
    • 2006
  • 본 논문은 일반적으로 많은 특징들을 갖고 있는 패턴 분류 문제인 감정 인식을 위한 새로운 특징 선택 방법을 제안한다. '특징 선택'은 패턴 인식 성능의 향상에 기여하고 '차원의 저주'문제에도 좋은 해결책으로 많이 사용되는 방법이다. 그래서, 본 논문에서는 강화학습의 개념을 사용한 상호 작용에 의한 특징 선택 방법인 IFS(Interactiv Feature Selection)를 고안하였고 이 알고리즘을 사용하여 선택된 특징들을 감정 인식 시스템에 적용하여 성능이 향상됨을 확인하였다. 또한 기존의 특징 선택 방법과의 비교를 통하여 본 알고리즘의 우수성을 확인하였다.

패턴 인식문제를 위한 유전자 알고리즘 기반 특징 선택 방법 개발 (Genetic Algorithm Based Feature Selection Method Development for Pattern Recognition)

  • 박창현;김호덕;양현창;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제16권4호
    • /
    • pp.466-471
    • /
    • 2006
  • 패턴 인식 문제에서 중요한 전처리 과정 중 하나는 특정을 선택하거나 추출하는 부분이다. 특정을 추출하는 방법으로는 PCA가 보통 사용되고 특정을 선택하는 방법으로는 SFS 나 SBS 등의 방법들이 자주 사용되고 있다. 본 논문은 진화 연산 방법으로써 비선형 최적화 문제에서 유용하게 사용되어 지고 있는 유전자 알고리즘을 특정 선택에 적용하는 유전자 알고리즘 특정 선택 (Genetic Algorithm Feature Selection: GAFS)방법을 개발하여 다른 특징 선택 알고리즘과의 비교를 통해 본 알고리즘의 성능을 관찰한다.

Detecting outliers in segmented genomes of flu virus using an alignment-free approach

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • 제18권1호
    • /
    • pp.2.1-2.11
    • /
    • 2020
  • In this paper, we propose a new approach to detecting outliers in a set of segmented genomes of the flu virus, a data set with a heterogeneous set of sequences. The approach has the following computational phases: feature extraction, which is a mapping into feature space, alignment-free distance measure to measure the distance between any two segmented genomes, and a mapping into distance space to analyze a quantum of distance values. The approach is implemented using supervised and unsupervised learning modes. The experiments show robustness in detecting outliers of the segmented genome of the flu virus.