Although feature-based design is a promising approach to fully integrating CAD/CAM, current feature-based design approaches seldom provide methodologies to easily define and design features. This paper proposes a new approach to integrating parametric design with feature-based design to overcome those limitations by globally decomposing a design into a set of features and locally defining and positioning each feature by geometric constraints. Each feature is defined as a parametric shape which consists of a feature section, attributes, and a set of constraints. The generalized sketching and sweeping techniques are used to simplify the process of designing features. The proposed approach is knowledge-based and its computational efficiency in geometric reasoning is improved greatly. Parametrically designed features not only have the advantage of allowing users to efficiently perform design changes, but also provide designers with a natural design environment in which they can do their work more naturally and creatively.
This paper presents the novel feature selection method for Emotion Recognition, which may include a lot of original features. Specially, the emotion recognition in this paper treated speech signal with emotion. The feature selection has some benefits on the pattern recognition performance and 'the curse of dimension'. Thus, We implemented a simulator called 'IFS' and those result was applied to a emotion recognition system(ERS), which was also implemented for this research. Our novel feature selection method was basically affected by Reinforcement Learning and since it needs responses from human user, it is called 'Interactive feature Selection'. From performing the IFS, we could get 3 best features and applied to ERS. Comparing those results with randomly selected feature set, The 3 best features were better than the randomly selected feature set.
Recent advancement in data gathering technique improves the capability of information collecting, thus allowing the learning process between gathered data patterns and application sub-tasks. A pattern can be associated with multiple labels, demanding multi-label learning capability, resulting in significant attention to multi-label feature selection since it can improve multi-label learning accuracy. However, existing evolutionary multi-label feature selection methods suffer from ineffective search process. In this study, we propose a evolutionary search process for the task of multi-label feature selection problem. The proposed method creates large set of offspring or new feature subsets and then retains the most promising feature subset. Experimental results demonstrate that the proposed method can identify feature subsets giving good multi-label classification accuracy much faster than conventional methods.
In this paper, we dealt with feature selection problem of large-scale and high-dimensional biological data such as omics data. For this problem, most of the previous approaches used simple score function to reduce the number of original variables and selected features from the small number of remained variables. In the case of methods that do not rely on filtering techniques, they do not consider the interactions between the variables, or generate approximate solutions to the simplified problem. Unlike them, by combining set covering and clustering techniques, we developed a new method that could deal with total number of variables and consider the combinatorial effects of variables for selecting good features. To demonstrate the efficacy and effectiveness of the method, we downloaded gene expression datasets from TCGA (The Cancer Genome Atlas) and compared our method with other algorithms including WEKA embeded feature selection algorithms. In the experimental results, we showed that our method could select high quality features for constructing more accurate classifiers than other feature selection algorithms.
코로나 팬데믹 사태로 인해 업무환경이 재택근무를 하는 환경으로 바뀌고 악성코드의 변종 또한 빠르게 발전하고 있다. 악성코드를 분석하고 백신 프로그램을 만들면 새로운 변종 악성코드가 생기고 변종에 대한 백신프로그램이 만들어 질 때까지 변종된 악성코드는 사용자에게 위협이 된다. 본 연구에서는 머신러닝 알고리즘을 사용하여 악성파일 여부를 예측하는 방법을 제시하였다. 일반적인 악성코드의 구조를 갖는 Portable Executable 구조 파일을 파이썬의 LIEF 라이브러리를 사용하여 Certificate, Imports, Opcode 등 3가지 feature에 대해 정적분석을 하였다. 학습 데이터로는 정상파일 320개와 악성파일 530개를 사용하였다. Certificate는 hasSignature(디지털 서명정보), isValidcertificate(디지털 서명의 유효성), isNotExpired(인증서의 유효성)의 feature set을 사용하고, Imports는 Import Address Table의 function 빈도수를 비교하여 feature set을 구축하였다. Opcode는 tri-gram으로 추출하여 빈도수를 비교하여 feature set을 구축하였다. 테스트 데이터로는 정상파일 360개 악성파일 610개를 사용하였으며 Feature set을 사용하여 random forest, decision tree, bagging, adaboost 등 4가지 머신러닝 알고리즘을 대상으로 성능을 비교하였고, bagging 알고리즘에서 약 0.98의 정확도를 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제5권3호
/
pp.575-591
/
2011
We present a novel active contour-based two-pass approach to extract smooth feature regions from a triangular mesh. In the first pass, an active contour formulated in level-set surfaces is devised to extract feature regions with rough boundaries. In the second pass, the rough boundary curve is smoothed by minimizing internal energy, which is derived from its curvature. The separation of the extraction and smoothing process enables us to extract feature regions with smooth boundaries from a triangular mesh without user's initial model. Furthermore, smooth feature curves can also be obtained by skeletonizing the smooth feature regions. We tested our algorithm on facial models and proved its excellence.
The object recognition mechanism of human being is not well understood yet. On research of animal experiment using an ape, however, neurons that respond to simple shape (e.g. circle, triangle, square and so on) were found. And Hypothesis has been set up as human being may recognize object as combination of such simple shapes. That mechanism is called Figure Alphabet Hypothesis, and those simple shapes are called Figure Alphabet. As one way to research object recognition algorithm, we focused attention to this Figure Alphabet Hypothesis. Getting idea from it, we proposed the feature extraction algorithm for object recognition. In this paper, we described recognition of binarized images of multifont alphabet characters by the recognition model which combined three-layered neural network in the feature extraction algorithm. First of all, we calculated the difference between the learning image data set and the template by the feature extraction algorithm. The computed finite difference is a feature quantity of the feature extraction algorithm. We had it input the feature quantity to the neural network model and learn by backpropagation (BP method). We had the recognition model recognize the unknown image data set and found the correct answer rate. To estimate the performance of the contriving recognition model, we had the unknown image data set recognized by a conventional neural network. As a result, the contriving recognition model showed a higher correct answer rate than a conventional neural network model. Therefore the validity of the contriving recognition model could be proved. We'll plan the research a recognition of natural image by the contriving recognition model in the future.
본 논문은 일반적으로 많은 특징들을 갖고 있는 패턴 분류 문제인 감정 인식을 위한 새로운 특징 선택 방법을 제안한다. '특징 선택'은 패턴 인식 성능의 향상에 기여하고 '차원의 저주'문제에도 좋은 해결책으로 많이 사용되는 방법이다. 그래서, 본 논문에서는 강화학습의 개념을 사용한 상호 작용에 의한 특징 선택 방법인 IFS(Interactiv Feature Selection)를 고안하였고 이 알고리즘을 사용하여 선택된 특징들을 감정 인식 시스템에 적용하여 성능이 향상됨을 확인하였다. 또한 기존의 특징 선택 방법과의 비교를 통하여 본 알고리즘의 우수성을 확인하였다.
패턴 인식 문제에서 중요한 전처리 과정 중 하나는 특정을 선택하거나 추출하는 부분이다. 특정을 추출하는 방법으로는 PCA가 보통 사용되고 특정을 선택하는 방법으로는 SFS 나 SBS 등의 방법들이 자주 사용되고 있다. 본 논문은 진화 연산 방법으로써 비선형 최적화 문제에서 유용하게 사용되어 지고 있는 유전자 알고리즘을 특정 선택에 적용하는 유전자 알고리즘 특정 선택 (Genetic Algorithm Feature Selection: GAFS)방법을 개발하여 다른 특징 선택 알고리즘과의 비교를 통해 본 알고리즘의 성능을 관찰한다.
In this paper, we propose a new approach to detecting outliers in a set of segmented genomes of the flu virus, a data set with a heterogeneous set of sequences. The approach has the following computational phases: feature extraction, which is a mapping into feature space, alignment-free distance measure to measure the distance between any two segmented genomes, and a mapping into distance space to analyze a quantum of distance values. The approach is implemented using supervised and unsupervised learning modes. The experiments show robustness in detecting outliers of the segmented genome of the flu virus.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.