• Title/Summary/Keyword: Feature Point

Search Result 1,329, Processing Time 0.033 seconds

A Method to Adjust Cyclic Signal Length Using Time Invariant Feature Point Extraction and Matching(TIFEM) (시불변 특징점 추출 및 정합을 이용한 주기 신호의 길이 보정 기법)

  • Han, A-Hyang;Park, Cheong-Sool;Kim, Sung-Shick;Baek, Jun-Geol
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.111-122
    • /
    • 2010
  • In this study, a length adjustment algorithm for cyclic signals in manufacturing process using Time Invariant Feature point Extraction and Matching(TIFEM) is proposed. In order to precisely compensate the length of cyclic signals which have irregular length in the middle of signal as well as in the full length more feature points are needed. The extracted feature must involve information about the pattern of signal and should have invariant properties on time and scale. The proposed TIFEM algorithm extracts features having the intrinsic properties of the signal characteristics at first. By using those extracted features, feature vector is constructed for each time point. Among those extracted features, the only effective features are filtered and are chosen such as basis for the length adjustment. And then the partial length adjustment is performed by matching feature points. To verify the performance of the proposed algorithm, the experiments were performed with the experimental data mimicking the three kinds of signals generated from the actual semiconductor process.

Image-based Visual Servoing Through Range and Feature Point Uncertainty Estimation of a Target for a Manipulator (목표물의 거리 및 특징점 불확실성 추정을 통한 매니퓰레이터의 영상기반 비주얼 서보잉)

  • Lee, Sanghyob;Jeong, Seongchan;Hong, Young-Dae;Chwa, Dongkyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.403-410
    • /
    • 2016
  • This paper proposes a robust image-based visual servoing scheme using a nonlinear observer for a monocular eye-in-hand manipulator. The proposed control method is divided into a range estimation phase and a target-tracking phase. In the range estimation phase, the range from the camera to the target is estimated under the non-moving target condition to solve the uncertainty of an interaction matrix. Then, in the target-tracking phase, the feature point uncertainty caused by the unknown motion of the target is estimated and feature point errors converge sufficiently near to zero through compensation for the feature point uncertainty.

An Efficient Feature Point Extraction Method for 360˚ Realistic Media Utilizing High Resolution Characteristics

  • Won, Yu-Hyeon;Kim, Jin-Sung;Park, Byuong-Chan;Kim, Young-Mo;Kim, Seok-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.85-92
    • /
    • 2019
  • In this paper, we propose a efficient feature point extraction method that can solve the problem of performance degradation by introducing a preprocessing process when extracting feature points by utilizing the characteristics of 360-degree realistic media. 360-degree realistic media is composed of images produced by two or more cameras and this image combining process is accomplished by extracting feature points at the edges of each image and combining them into one image if they cover the same area. In this production process, however, the stitching process where images are combined into one piece can lead to the distortion of non-seamlessness. Since the realistic media of 4K-class image has higher resolution than that of a general image, the feature point extraction and matching process takes much more time than general media cases.

Effect of Calcium Carbonate on Properties of Paper in Alkali Paper Masking (중성초지에서 탄산칼슘의 성질이 종이의 물성에 미치는 영향)

  • 신종순
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.8 no.1
    • /
    • pp.71-87
    • /
    • 1990
  • This paper presents a simple algorithm to obtain three dimensional information of an object. In the preprocessing of the stereo matching,feature point informations of stero image must be less sensitive to noise and well liked the correspondance problem. This paper described a simple technique of struture feature extraction of 3-D object and used edge-end point expanding method for unconnected line instade of Hough transform. The feature such as corner point and their angles are used for matching problem. The experimental results show that the described algorithm is a useful method for stereo correspondence problem.

  • PDF

A 3-D Position Compensation Method of Industrial Robot Using Block Interpolation (블록 보간법을 이용한 산업용 로봇의 3차원 위치 보정기법)

  • Ryu, Hang-Ki;Woo, Kyung-Hang;Choi, Won-Ho;Lee, Jae-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.235-241
    • /
    • 2007
  • This paper proposes a self-calibration method of robots those are used in industrial assembly lines. The proposed method is a position compensation using laser sensor and vision camera. Because the laser sensor is cross type laser sensor which can scan a horizontal and vertical line, it is efficient way to detect a feature of vehicle and winding shape of vehicle's body. For position compensation of 3-Dimensional axis, we applied block interpolation method. For selecting feature point, pattern matching method is used and 3-D position is selected by Euclidean distance mapping between 462 feature values and evaluated feature point. In order to evaluate the proposed algorithm, experiments are performed in real industrial vehicle assembly line. In results, robot's working point can be displayed 3-D points. These points are used to diagnosis error of position and reselecting working point.

Feature Template-Based Sweeping Shape Reverse Engineering Algorithm using a 3D Point Cloud

  • Kang, Tae Wook;Kim, Ji Eun;Hong, Chang Hee;Hwa, Cho Gun
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.680-681
    • /
    • 2015
  • This study develops an algorithm that automatically performs reverse engineering on three-dimensional (3D) sweeping shapes using a user's pre-defined feature templates and 3D point cloud data (PCD) of sweeping shapes. Existing methods extract 3D sweeping shapes by extracting points on a PCD cross section together with the center point in order to perform curve fitting and connect the center points. However, a drawback of existing methods is the difficulty of creating a 3D sweeping shape in which the user's preferred feature center points and parameters are applied. This study extracts shape features from cross-sectional points extracted automatically from the PCD and compared with pre-defined feature templates for similarities, thereby acquiring the most similar template cross-section. Fitting the most similar template cross-section to sweeping shape modeling makes the reverse engineering process automatic.

  • PDF

Improved Bag of Visual Words Image Classification Using the Process of Feature, Color and Texture Information (특징, 색상 및 텍스처 정보의 가공을 이용한 Bag of Visual Words 이미지 자동 분류)

  • Park, Chan-hyeok;Kwon, Hyuk-shin;Kang, Seok-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.79-82
    • /
    • 2015
  • Bag of visual words(BoVW) is one of the image classification and retrieval methods, using feature point that automatical sorting and searching system by image feature vector of data base. The existing method using feature point shall search or classify the image that user unwanted. To solve this weakness, when comprise the words, include not only feature point but color information that express overall mood of image or texture information that express repeated pattern. It makes various searching possible. At the test, you could see the result compared between classified image using the words that have only feature point and another image that added color and texture information. New method leads to accuracy of 80~90%.

  • PDF

Genetic lesion matching algorithm using medical image (의료영상 이미지를 이용한 유전병변 정합 알고리즘)

  • Cho, Young-bok;Woo, Sung-Hee;Lee, Sang-Ho;Han, Chang-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.960-966
    • /
    • 2017
  • In this paper, we proposed an algorithm that can extract lesion by inputting a medical image. Feature points are extracted using SIFT algorithm to extract genetic training of medical image. To increase the intensity of the feature points, the input image and that raining image are matched using vector similarity and the lesion is extracted. The vector similarity match can quickly lead to lesions. Since the direction vector is generated from the local feature point pair, the direction itself only shows the local feature, but it has the advantage of comparing the similarity between the other vectors existing between the two images and expanding to the global feature. The experimental results show that the lesion matching error rate is 1.02% and the processing speed is improved by about 40% compared to the case of not using the feature point intensity information.

Non-Prior Training Active Feature Model-Based Object Tracking for Real-Time Surveillance Systems (실시간 감시 시스템을 위한 사전 무학습 능동 특징점 모델 기반 객체 추적)

  • 김상진;신정호;이성원;백준기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.23-34
    • /
    • 2004
  • In this paper we propose a feature point tracking algorithm using optical flow under non-prior taming active feature model (NPT-AFM). The proposed algorithm mainly focuses on analysis non-rigid objects[1], and provides real-time, robust tracking by NPT-AFM. NPT-AFM algorithm can be divided into two steps: (i) localization of an object-of-interest and (ii) prediction and correction of the object position by utilizing the inter-frame information. The localization step was realized by using a modified Shi-Tomasi's feature tracking algoriam[2] after motion-based segmentation. In the prediction-correction step, given feature points are continuously tracked by using optical flow method[3] and if a feature point cannot be properly tracked, temporal and spatial prediction schemes can be employed for that point until it becomes uncovered again. Feature points inside an object are estimated instead of its shape boundary, and are updated an element of the training set for AFH Experimental results, show that the proposed NPT-AFM-based algerian can robustly track non-rigid objects in real-time.

Recognition of Feature Points in ECG and Human Pulse using Wavelet Transform (웨이브렛 변환을 이용한 심전도와 맥파의 특징점 인식)

  • Kil Se-Kee;Shen Dong-Fan;Lee Eung-Hyuk;Min Hong-Ki;Hong Seung-Hong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.75-81
    • /
    • 2006
  • The purpose of this paper is to recognize the feature points of ECG and human pulse -which signal shows the electric and physical characteristics of heart respectively- using wavelet transform. Wavelet transform is proper method to analyze a signal in time-frequency domain. In the process of wavelet decomposition and reconstruction of ECG and human pulse signal, we removed the noises of signal and recognized the feature points of signal using some of decomposed component of signal. We obtained the result of recognition rate that is estimated about 95.45$\%$ in case of QRS complex, 98.08$\%$ in case of S point and P point and 92.81$\%$ in case of C point. And we computed diagnosis parameters such as RRI, U-time and E-time.