• Title/Summary/Keyword: Feature Parameter

Search Result 528, Processing Time 0.028 seconds

Generation of 3D STEP Model from 2D Drawings Using Feature Definition of Ship Structure (선체구조 특징형상 정의에 의한 2D 도면에서 3D STEP 선체 모델의 생성)

  • 황호진;한순흥;김용대
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.2
    • /
    • pp.122-132
    • /
    • 2003
  • STEP AP218 has a standard schema to represent the structural model of a midship section. While it helps to exchange ship structural models among heterogeneous automation systems, most shipyards and classification societies still exchange information using 2D paper drawings. We propose a feature parameter input method to generate a 3D STEP model of a ship structure from 2D drawings. We have analyzed the ship structure information contained in 2D drawings and have defined a data model to express the contents of the drawing. We also developed a QUI for the feature parameter input. To translate 2D information extracted from the drawing into a STEP AP2l8 model, we have developed a shape generation library, and generated the 3D ship model through this library. The generated 3D STEP model of a ship structure can be used to exchange information between design departments in a shipyard as well as between classification societies and shipyards.

Camera Motion Parameter Estimation Technique using 2D Homography and LM Method based on Invariant Features

  • Cha, Jeong-Hee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.297-301
    • /
    • 2005
  • In this paper, we propose a method to estimate camera motion parameter based on invariant point features. Typically, feature information of image has drawbacks, it is variable to camera viewpoint, and therefore information quantity increases after time. The LM(Levenberg-Marquardt) method using nonlinear minimum square evaluation for camera extrinsic parameter estimation also has a weak point, which has different iteration number for approaching the minimal point according to the initial values and convergence time increases if the process run into a local minimum. In order to complement these shortfalls, we, first propose constructing feature models using invariant vector of geometry. Secondly, we propose a two-stage calculation method to improve accuracy and convergence by using homography and LM method. In the experiment, we compare and analyze the proposed method with existing method to demonstrate the superiority of the proposed algorithms.

Pattern recognition of SMD IC using wavelet transform and neural network (웨이브렛 변환과 신경회로망을 이용한 SMD IC 패턴인식)

  • 이명길;이준신
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.7
    • /
    • pp.102-111
    • /
    • 1997
  • In this paper, a patern recognition method of surface mount device(SMD) IC using wavelet transform and neural network is proposed. We chose the feature parameter according to the characteristics of coefficient matrix which is obtained from four level discrete wavelet transform (DWT). These feature parameters are normalized and then used for the input vector of neural network which is capable of adapting the surroundings such as variation of illumination, arrangement of objects and translation. Experimental results show that when the same form of feature pattern, as is used for learning, is put into neural network and gained 100% rate ofrecognition irrespective of SMD IC kinds, location and variation of illumination. In the case of unused feature pattern for learning, the recognition rate is 85.9% under the similar surroundings, where as an average recognition rate is 96.87% for the case of reregulated value of illumination. Proosed method is relatively simple compared with the traditional space domain method in extracting the feature parameter and is also well suited for recognizing the pattern's class, position and existence. It can also shorten the processing tiem better than method extracting feature parameter with the use of discrete cosine transform(DCT) and adapt the surroundings such as variation of illumination, the arrangement and the translation of SMD IC.

  • PDF

Adoption of Support Vector Machine and Independent Component Analysis for Implementation of Speech Recognizer (음성인식기 구현을 위한 SVM과 독립성분분석 기법의 적용)

  • 박정원;김평환;김창근;허강인
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2164-2167
    • /
    • 2003
  • In this paper we propose effective speech recognizer through recognition experiments for three feature parameters(PCA, ICA and MFCC) using SVM(Support Vector Machine) classifier In general, SVM is classification method which classify two class set by finding voluntary nonlinear boundary in vector space and possesses high classification performance under few training data number. In this paper we compare recognition result for each feature parameter and propose ICA feature as the most effective parameter

  • PDF

Parts-Based Feature Extraction of Spectrum of Speech Signal Using Non-Negative Matrix Factorization

  • Park, Jeong-Won;Kim, Chang-Keun;Lee, Kwang-Seok;Koh, Si-Young;Hur, Kang-In
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.209-212
    • /
    • 2003
  • In this paper, we proposed new speech feature parameter through parts-based feature extraction of speech spectrum using Non-Negative Matrix Factorization (NMF). NMF can effectively reduce dimension for multi-dimensional data through matrix factorization under the non-negativity constraints, and dimensionally reduced data should be presented parts-based features of input data. For speech feature extraction, we applied Mel-scaled filter bank outputs to inputs of NMF, than used outputs of NMF for inputs of speech recognizer. From recognition experiment result, we could confirm that proposed feature parameter is superior in recognition performance than mel frequency cepstral coefficient (MFCC) that is used generally.

Implementation of Speaker Independent Speech Recognition System Using Independent Component Analysis based on DSP (독립성분분석을 이용한 DSP 기반의 화자 독립 음성 인식 시스템의 구현)

  • 김창근;박진영;박정원;이광석;허강인
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.359-364
    • /
    • 2004
  • In this paper, we implemented real-time speaker undependent speech recognizer that is robust in noise environment using DSP(Digital Signal Processor). Implemented system is composed of TMS320C32 that is floating-point DSP of Texas Instrument Inc. and CODEC for real-time speech input. Speech feature parameter of the speech recognizer used robust feature parameter in noise environment that is transformed feature space of MFCC(met frequency cepstral coefficient) using ICA(Independent Component Analysis) on behalf of MFCC. In recognition result in noise environment, we hew that recognition performance of ICA feature parameter is superior than that of MFCC.

Feature Parameter Extraction and Analysis in the Wavelet Domain for Discrimination of Music and Speech (음악과 음성 판별을 위한 웨이브렛 영역에서의 특징 파라미터)

  • Kim, Jung-Min;Bae, Keun-Sung
    • MALSORI
    • /
    • no.61
    • /
    • pp.63-74
    • /
    • 2007
  • Discrimination of music and speech from the multimedia signal is an important task in audio coding and broadcast monitoring systems. This paper deals with the problem of feature parameter extraction for discrimination of music and speech. The wavelet transform is a multi-resolution analysis method that is useful for analysis of temporal and spectral properties of non-stationary signals such as speech and audio signals. We propose new feature parameters extracted from the wavelet transformed signal for discrimination of music and speech. First, wavelet coefficients are obtained on the frame-by-frame basis. The analysis frame size is set to 20 ms. A parameter $E_{sum}$ is then defined by adding the difference of magnitude between adjacent wavelet coefficients in each scale. The maximum and minimum values of $E_{sum}$ for period of 2 seconds, which corresponds to the discrimination duration, are used as feature parameters for discrimination of music and speech. To evaluate the performance of the proposed feature parameters for music and speech discrimination, the accuracy of music and speech discrimination is measured for various types of music and speech signals. In the experiment every 2-second data is discriminated as music or speech, and about 93% of music and speech segments have been successfully detected.

  • PDF

The Audio Signal Classification System Using Contents Based Analysis

  • Lee, Kwang-Seok;Kim, Young-Sub;Han, Hag-Yong;Hur, Kang-In
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.245-248
    • /
    • 2007
  • In this paper, we research the content-based analysis and classification according to the composition of the feature parameter data base for the audio data to implement the audio data index and searching system. Audio data is classified to the primitive various auditory types. We described the analysis and feature extraction method for the feature parameters available to the audio data classification. And we compose the feature parameters data base in the index group unit, then compare and analyze the audio data centering the including level around and index criterion into the audio categories. Based on this result, we compose feature vectors of audio data according to the classification categories, and simulate to classify using discrimination function.

Morphological Feature Parameter Extraction from the Chromosome Image Using Reconstruction Algorithm (염색체 영상의 재구성에 의한 형태학적 특징 파라메타 추출)

  • 장용훈;이권순
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.545-552
    • /
    • 1996
  • Researches on chromosome are very significant in cytogenetics since a gene of the chromosome controls revelation of the inheritance plasma The human chromosome analysis is widely used to diagnose genetic disease and various congenital anomalies. Many researches on automated chromosome karyotype analysis has been carried out, some of which produced commercial systems. However, there still remains much room for improving the accuracy of chromosome classification. In this paper, we propose an algorithm for reconstruction of the chromosDme image to improve the chromosome classification accuracy. Morphological feature parameters are extracted from the reconstructed chromosome images. The reconstruction method from chromosome image is the 32 direction line algorithm. We extract three morphological feature parameters, centromeric index(C.I.), relative length ratio(R.L.), and relative area ratio(R.A.), by preprocessing ten human chromosDme images. The experimental results show that proposed algorithm is better than that of other researchers'comparing by feature parameter errors.

  • PDF

Speech Emotion Recognition using Feature Selection and Fusion Method (특징 선택과 융합 방법을 이용한 음성 감정 인식)

  • Kim, Weon-Goo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1265-1271
    • /
    • 2017
  • In this paper, the speech parameter fusion method is studied to improve the performance of the conventional emotion recognition system. For this purpose, the combination of the parameters that show the best performance by combining the cepstrum parameters and the various pitch parameters used in the conventional emotion recognition system are selected. Various pitch parameters were generated using numerical and statistical methods using pitch of speech. Performance evaluation was performed on the emotion recognition system using Gaussian mixture model(GMM) to select the pitch parameters that showed the best performance in combination with cepstrum parameters. As a parameter selection method, sequential feature selection method was used. In the experiment to distinguish the four emotions of normal, joy, sadness and angry, fifteen of the total 56 pitch parameters were selected and showed the best recognition performance when fused with cepstrum and delta cepstrum coefficients. This is a 48.9% reduction in the error of emotion recognition system using only pitch parameters.