• Title/Summary/Keyword: Feature Function

Search Result 1,289, Processing Time 0.026 seconds

Feature Vector Extraction and Automatic Classification for Transient SONAR Signals using Wavelet Theory and Neural Networks (Wavelet 이론과 신경회로망을 이용한 천이 수중 신호의 특징벡타 추출 및 자동 식별)

  • Yang, Seung-Chul;Nam, Sang-Won;Jung, Yong-Min;Cho, Yong-Soo;Oh, Won-Tcheon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.71-81
    • /
    • 1995
  • In this paper, feature vector extraction methods and classification algorithms for the automatic classification of transient signals in underwater are discussed. A feature vector extraction method using wavelet transform, which shows good performance with small number of coefficients, is proposed and compared with the existing classical methods. For the automatic classification, artificial neural networks such as multilayer perceptron (MLP), radial basis function (RBF), and MLP-Class are utilized, where those neural networks as well as extracted feature vectors are combined to improve the performance and reliability of the proposed algorithm. It is confirmed by computer simulation with Traco's standard transient data set I and simulated data that the proposed feature vector extraction method and classification algorithm perform well, assuming that the energy of a given transient signal is sufficiently larger than that of a ambient noise, that there are the finite number of noise sources, and that there does not exist noise sources more than two simultaneously.

  • PDF

Content Based Classification of Audio Signal using Discriminant Function (식별함수를 이용한 오디오신호의 내용기반 분류)

  • Kim, Young-Sub;Lee, Kwang-Seok;Koh, Si-Young;Hur, Kang-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.201-204
    • /
    • 2007
  • In this paper, we research the content-based analysis and classification according to the composition of the feature parameters pool for the auditory signals to implement the auditory indexing and searching system. Auditory data is classified to the primitive various auditory types. we described the analysis and feature extraction method for the feature parameters available to the auditory data classification. And we compose the feature parameters pool in the indexing group unit, then compare and analysis the auditory data centering around the including level and indexing criterion into the audio categories. Based on this result, we composit feature vectors of audio data according to the classification categories, then experiment the classification using discrimination function.

  • PDF

Landmark Recognition Method based on Geometric Invariant Vectors (기하학적 불변벡터기반 랜드마크 인식방법)

  • Cha Jeong-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.3 s.35
    • /
    • pp.173-182
    • /
    • 2005
  • In this paper, we propose a landmark recognition method which is irrelevant to the camera viewpoint on the navigation for localization. Features in previous research is variable to camera viewpoint, therefore due to the wealth of information, extraction of visual landmarks for positioning is not an easy task. The proposed method in this paper, has the three following stages; first, extraction of features, second, learning and recognition, third, matching. In the feature extraction stage, we set the interest areas of the image. where we extract the corner points. And then, we extract features more accurate and resistant to noise through statistical analysis of a small eigenvalue. In learning and recognition stage, we form robust feature models by testing whether the feature model consisted of five corner points is an invariant feature irrelevant to viewpoint. In the matching stage, we reduce time complexity and find correspondence accurately by matching method using similarity evaluation function and Graham search method. In the experiments, we compare and analyse the proposed method with existing methods by using various indoor images to demonstrate the superiority of the proposed methods.

  • PDF

A Study on the Electrical and Electronic Architecture of Electric Vehicle Powertrain Domain through Big Data Analysis (빅데이터 분석을 통한 전기차 파워트레인 도메인 전기전자 아키텍처 연구)

  • Kim, Do Kon;Kim, Woo Ju
    • The Journal of Information Systems
    • /
    • v.31 no.4
    • /
    • pp.47-73
    • /
    • 2022
  • Purpose The purpose of this study is to select the electronic architecture concept of the powertrain domain of the electronic platform to be applied to electric vehicles after 2025. Previously, the automotive electrical and electronic architecture was determined only by trend analysis, but the purpose was to determine the scenario based on the data and select it with clear evaluation indicators. Design/methodology/approach This study identified the function to be applied to the powertrain domain of next-generation electric vehicle, estimated the controller, defined the function feature list, organized the scenario candidates with the controller list and function feature list, and selected the final architecture scenario. Findings According to the research results, the powertrain domain of electric vehicles was selected as the architectural concept to apply the DCU (Domain Control Unit) and VCU (Vehicle Control Unit) integrated architecture to next-generation electric vehicles. Although it is disadvantageous or equivalent in terms of cost, it was found to be excellent in most indicators such as stability, security, and hardware demand.

Robust Image Mosaic using Geometrical Feature Model (기하학적 특징 모델을 이용한 강건한 영상 모자이크 기법)

  • 김정훈;김대현;윤용인;최종수
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.13-16
    • /
    • 2000
  • This paper presents a robust method to combine a collection of images with small fields of view to obtain an image with a large field of view. In the previous works, there are two main areas which one is a cross correlation-based method and the other is a feature-based method. The former is based on motion estimation from video sequences. so there are a problem on rotating a camera about optical axis. In the latter method, it is difficult to match correspondence feature points correctly.'re find correct correspondences, we proposed the geometrical feature model and correspondence filters and the Gaussian distribution weight function to blend the images smoothly. The experiments show that our method is robust and effective.

  • PDF

Sequence driven features for prediction of subcellular localization of proteins

  • Kim, Jong-Kyoung;Bang, Sung-Yang;Choi, Seung-Jin
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.237-242
    • /
    • 2005
  • Predicting the cellular location of an unknown protein gives a valuable information for inferring the possible function of the protein. For more accurate prediction system, we need a good feature extraction method that transforms the raw sequence data into the numerical feature vector, minimizing information loss. In this paper, we propose new methods of extracting underlying features only from the sequence data by computing pairwise sequence alignment scores. In addition, we use composition based features to improve prediction accuracy. To construct an SVM ensemble from separately trained SVM classifiers, we propose specificity based weighted majority voting. The overall prediction accuracy evaluated by the 5-fold cross-validation reached 88.53% for the eukaryotic animal data set. By comparing the prediction accuracy of various feature extraction methods, we could get the biological insight on the location of targeting information. Our numerical experiments confirm that our new feature extraction methods are very useful for predicting subcellular localization of proteins.

  • PDF

A Feature Vector Selection Method for Cancer Classification

  • Yun, Zheng;Keong, Kwoh-Chee
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.23-28
    • /
    • 2005
  • The high-dimensionality and insufficiency of gene expression profiles and proteomic profiles makes feature selection become a critical step in efficiently building accurate models for cancer problems based on such data sets. In this paper, we use a method, called Discrete Function Learning algorithm, to find discriminatory feature vectors based on information theory. The target feature vectors contain all or most information (in terms of entropy) of the class attribute. Two data sets are selected to validate our approach, one leukemia subtype gene expression data set and one ovarian cancer proteomic data set. The experimental results show that the our method generalizes well when applied to these insufficient and high-dimensional data sets. Furthermore, the obtained classifiers are highly understandable and accurate.

  • PDF

GA-SVM Ensemble 모델에서의 accuracy와 diversity를 고려한 feature subset population 선택

  • Seong, Gi-Seok;Jo, Seong-Jun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.614-620
    • /
    • 2005
  • Ensemble에서 feature selection은 각 classifier의 학습할 데이터의 변수를 다르게 하여 diversity를 높이며, 이것은 일반적인 성능향상을 가져온다. Feature selection을 할 때 쓰는 방법 중의 하나가 Genetic Algorithm (GA)이며, GA-SVM은 GA를 기본으로 한 wrapper based feature selection mechanism으로 response model과 keystroke dynamics identity verification model을 만들 때 좋은 성능을 보였다. 하지만 population 안의 후보들간의 diversity를 보장해주지 못한다는 단점 때문에 classifier들의 accuracy와 diversity의 균형을 맞추기 위한 heuristic parameter setting이 존재하며 이를 조정해야만 하였다. 우리는 GA-SVM 알고리즘을 바탕으로, population안 후보들의 fitness를 측정할 때 accuracy와 diversity 둘 다 고려하는 fitness function을 도입하여 추가적인 classifier 선택 작업을 제거하면서 성능을 유지시키는 방안을 연구하였으며 결과적으로 알고리즘의 복잡성을 줄이면서도 모델의 성능을 유지시켰다.

  • PDF

A Study on the Formative Feature Characteristics of Korean Jeans Fashion (한국 진즈 패션의 조형성에 관한 연구)

  • Choi, Hae-Joo
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.8 no.3
    • /
    • pp.101-111
    • /
    • 2006
  • Jeans fashion in contemporary fashion has various meanings and values, and the importance of it increases. The purpose of this study is to analyze the formative feature characteristics and the aesthetic values of Korean jeans fashion. Fashion photograghs from leading monthly fashion magazines from 2000 to 2005 were analyzed. The types of styles and the formative feature characteristics and the aesthetic values of Korean jeans fashion were studied. The major conclusions of the study are as follows 1. The types of Korean jeans fashion styles were western style, punk style, neo classic style and ethnic style. 2. The characteristics of Korean jeans fashion designs were the varieties in material, color, technique of expression and application. 3. The formative feature characteristics were traditionalism, sexualism, extraordinarily and exhibitionism. Korean jeans fashion has developed creative and decorative designs through various designs and styles. As the activities of the people can be increased in the future, the function and the design of jeans fashion can be developed diversely.

  • PDF

A Syntactic and Semantic Approach to Fingerprints Classification (구문론과 의미론적 방법을 이용한 지문분류)

  • Choi, Young-Sik;Sin, Tae-Min;Lim, In-Sik;Park, Kyu-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1157-1159
    • /
    • 1987
  • A syntactic and semantic approach is used to make type classification based on feature points(whorl, delta, core) and the shape of flow line around feature points. The image is divided into 30 by 30 subregions which are represented in the average direction and 4-tuple direction component. Next the relaxation process with singularity detection and convergency checking is performed. A set of semantic languages is used to describe the major flow line around the extracted feature points. LR(1) parser and feature transfer function are used to recognize the coded flow patterns. The 72 fingerprint impressions is used to test the proposed approach and the rate of the classification is about 93 percentages.

  • PDF