• 제목/요약/키워드: Feature Extraction

검색결과 2,586건 처리시간 0.029초

A STUDY ON SPATIAL FEATURE EXTRACTION IN THE CLASSIFICATION OF HIGH RESOLUTIION SATELLITE IMAGERY

  • Han, You-Kyung;Kim, Hye-Jin;Choi, Jae-Wan;Kim, Yong-Il
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.361-364
    • /
    • 2008
  • It is well known that combining spatial and spectral information can improve land use classification from satellite imagery. High spatial resolution classification has a limitation when only using the spectral information due to the complex spatial arrangement of features and spectral heterogeneity within each class. Therefore, extracting the spatial information is one of the most important steps in high resolution satellite image classification. In this paper, we propose a new spatial feature extraction method. The extracted features are integrated with spectral bands to improve overall classification accuracy. The classification is achieved by applying a Support Vector Machines classifier. In order to evaluate the proposed feature extraction method, we applied our approach to KOMPSAT-2 data and compared the result with the other methods.

  • PDF

A Novel Model for Smart Breast Cancer Detection in Thermogram Images

  • Kazerouni, Iman Abaspur;Zadeh, Hossein Ghayoumi;Haddadnia, Javad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권24호
    • /
    • pp.10573-10576
    • /
    • 2015
  • Background: Accuracy in feature extraction is an important factor in image classification and retrieval. In this paper, a breast tissue density classification and image retrieval model is introduced for breast cancer detection based on thermographic images. The new method of thermographic image analysis for automated detection of high tumor risk areas, based on two-directional two-dimensional principal component analysis technique for feature extraction, and a support vector machine for thermographic image retrieval was tested on 400 images. The sensitivity and specificity of the model are 100% and 98%, respectively.

Enhancing Accuracy Performance of Fuzzy Vault Non-Random Chaff Point Generator for Mobile Payment Authentication

  • Arrahmah, Annisa Istiqomah;Gondokaryono, Yudi Satria;Rhee, Kyung-Hyune
    • Journal of Multimedia Information System
    • /
    • 제3권2호
    • /
    • pp.13-20
    • /
    • 2016
  • Biometric authentication for account-based mobile payment continues to gain attention because of improvements on sensors that can collect biometric information. We propose an enhanced method for mobile payment security based on biometric authentication. In this mobile payment system, the communication between the user and the relying party is based on public key infrastructure. This method secures both the key and the biometric template in the user side using fuzzy vault biometric cryptosystems, which is based on non-random chaff point generator. In this paper, we consider an important process for the common fuzzy vault system, that is, the feature extraction method. We evaluate various feature extraction methods to enhance the accurate performance of the system.

A Novel Recognition Algorithm Based on Holder Coefficient Theory and Interval Gray Relation Classifier

  • Li, Jingchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4573-4584
    • /
    • 2015
  • The traditional feature extraction algorithms for recognition of communication signals can hardly realize the balance between computational complexity and signals' interclass gathered degrees. They can hardly achieve high recognition rate at low SNR conditions. To solve this problem, a novel feature extraction algorithm based on Holder coefficient was proposed, which has the advantages of low computational complexity and good interclass gathered degree even at low SNR conditions. In this research, the selection methods of parameters and distribution properties of the extracted features regarding Holder coefficient theory were firstly explored, and then interval gray relation algorithm with improved adaptive weight was adopted to verify the effectiveness of the extracted features. Compared with traditional algorithms, the proposed algorithm can more accurately recognize signals at low SNR conditions. Simulation results show that Holder coefficient based features are stable and have good interclass gathered degree, and interval gray relation classifier with adaptive weight can achieve the recognition rate up to 87% even at the SNR of -5dB.

Study on 3 DoF Image and Video Stitching Using Sensed Data

  • Kim, Minwoo;Chun, Jonghoon;Kim, Sang-Kyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4527-4548
    • /
    • 2017
  • This paper proposes a method to generate panoramic images by combining conventional feature extraction algorithms (e.g., SIFT, SURF, MPEG-7 CDVS) with sensed data from inertia sensors to enhance the stitching results. The challenge of image stitching increases when the images are taken from two different mobile phones with no posture calibration. Using inertia sensor data obtained by the mobile phone, images with different yaw, pitch, and roll angles are preprocessed and adjusted before performing stitching process. Performance of stitching (e.g., feature extraction time, inlier point numbers, stitching accuracy) between conventional feature extraction algorithms is reported along with the stitching performance with/without using the inertia sensor data. In addition, the stitching accuracy of video data was improved using the same sensed data, with discrete calculation of homograph matrix. The experimental results for stitching accuracies and speed using sensed data are presented in this paper.

PCA-CIA Ensemble-based Feature Extraction for Bio-Key Generation

  • Kim, Aeyoung;Wang, Changda;Seo, Seung-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.2919-2937
    • /
    • 2020
  • Post-Quantum Cryptography (PQC) is rapidly developing as a stable and reliable quantum-resistant form of cryptography, throughout the industry. Similarly to existing cryptography, however, it does not prevent a third-party from using the secret key when third party obtains the secret key by deception, unauthorized sharing, or unauthorized proxying. The most effective alternative to preventing such illegal use is the utilization of biometrics during the generation of the secret key. In this paper, we propose a biometric-based secret key generation scheme for multivariate quadratic signature schemes, such as Rainbow. This prevents the secret key from being used by an unauthorized third party through biometric recognition. It also generates a shorter secret key by applying Principal Component Analysis (PCA)-based Confidence Interval Analysis (CIA) as a feature extraction method. This scheme's optimized implementation performed well at high speeds.

에폭시/마이카 커플러를 이용한 고정자권선 결함신호 특징추출에 관한연구 (A Study on Feature Extraction of Fault Signal for Stator Winding using Epoxy/Mica Coupler)

  • 박재준;김희동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.225-226
    • /
    • 2005
  • In this Study, we have acquired 5-simulation Fault types Signals of high voltage Motor stator winding using epoxy/mica coupler. In order to know stator winding fault type using fault signals, we have performed feature extraction to apply wavelet transform technique. we have obtained skewness and kurtosis as statistical parameters of fault signal pattern from non deterioration state winding. We have know that 5 fault signals types have done an exponential function pattern shape but individually fault a class widely was different each other a signal waveform of pattern.

  • PDF

모멘트를 이용한 비선형 주요성분분석 신경망의 효율적인 학습알고리즘 (An efficient learning algorithm of nonlinear PCA neural networks using momentum)

  • 조용현
    • 한국산업융합학회 논문집
    • /
    • 제3권4호
    • /
    • pp.361-367
    • /
    • 2000
  • This paper proposes an efficient feature extraction of the image data using nonlinear principal component analysis neural networks of a new learning algorithm. The proposed method is a learning algorithm with momentum for reflecting the past trends. It is to get the better performance by restraining an oscillation due to converge the global optimum. The proposed algorithm has been applied to the cancer image of $256{\times}256$ pixels and the coin image of $128{\times}128$ pixels respectively. The simulation results show that the proposed algorithm has better performances of the convergence and the nonlinear feature extraction, in comparison with those using the backpropagation and the conventional nonlinear PCA neural networks.

  • PDF

위성영상의 선형특징 추출과 이를 이용한 자동 GCP 화일링에 관한 연구 (A Study on the Extraction of Linear Features from Satellite Images and Automatic GCP Filing)

  • 김정기;강치우;박래홍;이쾌희
    • 대한원격탐사학회지
    • /
    • 제5권2호
    • /
    • pp.133-145
    • /
    • 1989
  • This paper describes an implementation of linear feature extraction algorithms for satellite images and a method of automatic GCP(Ground Control Point) filing using the extracted linear feature. We propose a new linear feature extraction algorithm which uses magnitude and direction information of edges. The result of applying the proposed algorithm to satellite images are presented and compared with those of the other algorithms. By using the proposed algorithm, automatic GCP filing was successfully performed.

Feature Extraction System for Land Cover Changes Based on Segmentation

  • Jung, Myung-Hee;Yun, Eui-Jung
    • 대한원격탐사학회지
    • /
    • 제20권3호
    • /
    • pp.207-214
    • /
    • 2004
  • This study focused on providing a methodology to utilize temporal information obtained from remotely sensed data for monitoring a wide variety of targets on the earth's surface. Generally, a methodology in understanding of global changes is composed of mapping, quantifying, and monitoring changes in the physical characteristics of land cover. The selected processing and analysis technique affects the quality of the obtained information. In this research, feature extraction methodology is proposed based on segmentation. It requires a series of processing of multitempotal images: preprocessing of geometric and radiometric correction, image subtraction/thresholding technique, and segmentation/thresholding. It results in the mapping of the change-detected areas. Here, the appropriate methods are studied for each step and especially, in segmentation process, a method to delineate the exact boundaries of features is investigated in multiresolution framework to reduce computational complexity for multitemporal images of large size.