• Title/Summary/Keyword: Feature Evaluation and Selection

Search Result 87, Processing Time 0.028 seconds

Research on damage detection and assessment of civil engineering structures based on DeepLabV3+ deep learning model

  • Chengyan Song
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.443-457
    • /
    • 2024
  • At present, the traditional concrete surface inspection methods based on artificial vision have the problems of high cost and insecurity, while the computer vision methods rely on artificial selection features in the case of sensitive environmental changes and difficult promotion. In order to solve these problems, this paper introduces deep learning technology in the field of computer vision to achieve automatic feature extraction of structural damage, with excellent detection speed and strong generalization ability. The main contents of this study are as follows: (1) A method based on DeepLabV3+ convolutional neural network model is proposed for surface detection of post-earthquake structural damage, including surface damage such as concrete cracks, spaling and exposed steel bars. The key semantic information is extracted by different backbone networks, and the data sets containing various surface damage are trained, tested and evaluated. The intersection ratios of 54.4%, 44.2%, and 89.9% in the test set demonstrate the network's capability to accurately identify different types of structural surface damages in pixel-level segmentation, highlighting its effectiveness in varied testing scenarios. (2) A semantic segmentation model based on DeepLabV3+ convolutional neural network is proposed for the detection and evaluation of post-earthquake structural components. Using a dataset that includes building structural components and their damage degrees for training, testing, and evaluation, semantic segmentation detection accuracies were recorded at 98.5% and 56.9%. To provide a comprehensive assessment that considers both false positives and false negatives, the Mean Intersection over Union (Mean IoU) was employed as the primary evaluation metric. This choice ensures that the network's performance in detecting and evaluating pixel-level damage in post-earthquake structural components is evaluated uniformly across all experiments. By incorporating deep learning technology, this study not only offers an innovative solution for accurately identifying post-earthquake damage in civil engineering structures but also contributes significantly to empirical research in automated detection and evaluation within the field of structural health monitoring.

Methodology for Prioritizing Sidewalk Construction among 100 Candidate Sites on Rural National Highways (지방부 국도에서의 보도설치 우선순위 결정을 위한 방법론 개발 (일반국도 적용사례 중심으로))

  • Jeon, Woo Hoon;Yang, Choong Heon;Yoon, Jung Eun;Yang, Inchul
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.127-133
    • /
    • 2015
  • PURPOSES: The purpose of this study is to develop a methodology to prioritize sidewalk construction on rural national highways. METHODS : In order to determine an appropriate prioritization for sidewalk construction, we developed a specific methodology. The proposed methodology includes three main steps: 1) Analytic Hierarchy Process (AHP) methods, 2) Subjective evaluation of relevant road agencies for the candidate sidewalks along rural national highways, and 3) Field study conduction. Each step has four phases. The primary feature of this methodology is the addition of expert consultation and survey data, as well as a field study. In addition, the method could guarantee flexibility in selection for evaluation criteria. As a result, the proposed methodology could be used as a general procedure for application to other roadway classifications when considering sidewalk construction. RESULTS: In order to demonstrate the reasonableness of the proposed methodology, a case study was performed for exactly 100 candidate sites for sidewalk construction on rural national highways. All required evaluation scores were properly produced for each candidate site. By doing so, decision-makers can determine the priority for sidewalk construction at these sites by reviewing quantitatively and qualitatively considered data. CONCLUSIONS: The results of the case study can be applied to a long-term fundamental plan for sidewalk construction on rural national highways. Furthermore, this methodology could be employed to prioritize a small-scale SOC project(e. g. bicycle or pedestrian roads).

A Study of Evaluation of the Feature from Cooccurrence Matrix and Appropriate Applicable Resolution (공기행렬의 질감특성치들에 대한 평가와 적정 적용해상도에 관한 연구)

  • Kwon, Oh-Hyoung;Kim, Yong-Il;Eo, Yang-Dam
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.105-110
    • /
    • 2000
  • Since the advent of high resolution satellite image, possibilities of applying various human interpretation mechanism to these images have increased. Also many studies about these possibilities in many fields such as computer vision, pattern recognition, artificial intellegence and remote sensing have been done. In this field of these studies, texture is defined as a kind of quantity related to spatial distribution of brightness and tone and also plays an important role for interpretation of images. Especially, methods of obtaining texture by statistical model have been studied intensively. Among these methods, texture measurement method based on cooccurrence matrix is highly estimated because it is easy to calculate texture features compared with other methods. In addition, these results in high classification accuracy when this is applied to satellite images and aerial photos. But in the existing studies using cooccurrence matrix, features have been chosen arbitrarily without considering feature variation. And not enough studies have been implemented for appropriate resolution selection in which cooccurrence matrix can extract texture. Therefore, this study reviews the concept of cooccurrence matrix as a texture measurement method, evaluates usefulness of several features obtained from cooccurrence matrix, and proposes appropriate resolution by investigating variance trend of several features.

  • PDF

User Reputation Evaluation Using Co-occurrence Feature and Collective Intelligence (동시출현 자질과 집단 지성을 이용한 지식검색 문서 사용자 명성 평가)

  • Lee, Hyun-Woo;Han, Yo-Sub;Kim, Lae-Hyun;Cha, Jeong-Won
    • Korean Journal of Cognitive Science
    • /
    • v.19 no.4
    • /
    • pp.459-476
    • /
    • 2008
  • The user needs to find the answer to your question is growing fast at the service using collective intelligent knowledge. In the previous researches, it was proven that the non-text information like view counting, referrer number, and number of answer is good in evaluating answers. There were also many works about evaluating answers using the various kinds of word dictionaries. In this work, we propose new method to evaluate answers to question effectively using user reputation that estimated by the social activity. We use a modified PageRank algorithm for estimating user reputation. We also use the similarity between question and answer. From the result of experiment in the Naver GisikiN corpus, we can see that the proposed method gives meaningful performance to complement the answer selection rate.

  • PDF

Quality Prediction Model for Manufacturing Process of Free-Machining 303-series Stainless Steel Small Rolling Wire Rods (쾌삭 303계 스테인리스강 소형 압연 선재 제조 공정의 생산품질 예측 모형)

  • Seo, Seokjun;Kim, Heungseob
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.12-22
    • /
    • 2021
  • This article suggests the machine learning model, i.e., classifier, for predicting the production quality of free-machining 303-series stainless steel(STS303) small rolling wire rods according to the operating condition of the manufacturing process. For the development of the classifier, manufacturing data for 37 operating variables were collected from the manufacturing execution system(MES) of Company S, and the 12 types of derived variables were generated based on literature review and interviews with field experts. This research was performed with data preprocessing, exploratory data analysis, feature selection, machine learning modeling, and the evaluation of alternative models. In the preprocessing stage, missing values and outliers are removed, and oversampling using SMOTE(Synthetic oversampling technique) to resolve data imbalance. Features are selected by variable importance of LASSO(Least absolute shrinkage and selection operator) regression, extreme gradient boosting(XGBoost), and random forest models. Finally, logistic regression, support vector machine(SVM), random forest, and XGBoost are developed as a classifier to predict the adequate or defective products with new operating conditions. The optimal hyper-parameters for each model are investigated by the grid search and random search methods based on k-fold cross-validation. As a result of the experiment, XGBoost showed relatively high predictive performance compared to other models with an accuracy of 0.9929, specificity of 0.9372, F1-score of 0.9963, and logarithmic loss of 0.0209. The classifier developed in this study is expected to improve productivity by enabling effective management of the manufacturing process for the STS303 small rolling wire rods.

Defects Classification with UT Signals in Pressure Vessel Weld by Fuzzy Theory (퍼지이론을 이용한 압력용기 용접부 초음파 결함 특성 분류)

  • Sim, C.M.;Choi, H.L.;Baik, H.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.1
    • /
    • pp.11-22
    • /
    • 1997
  • It is very essential to get the accurate classification of defects in primary pressure vessel and piping welds for the safety of nuclear power plant. Ultrasonic testing has been widely applied to inspect primary pressure vessel and piping welds of nuclear power plants during PSI / ISI. Classification of flaws in weldments from their ultrasonic scattering signals is very important in quantitative nondestructive evaluation. This problem is ideally suited to a modern ultrasonic Pattern recognition technique. Here, a brief discussion on systematic approach to this methodology is presented including ultrasonic feature extraction, feature selection and classification. A stronger emphasis is placed on Fuzzy-UTSCS (UT signal classification system) as efficient classifiers for many practical classification problems. As an example Fuzzy-UTSCS is applied to classify flaws in ferrite pressure vessel weldments into two types such as linear and volumetric. It is shown that Fuzzy-UTSCS is able to exhibit higher performance than other classifiers in the defect classification.

  • PDF

Discrimination of neutrons and gamma-rays in plastic scintillator based on spiking cortical model

  • Bing-Qi Liu;Hao-Ran Liu;Lan Chang;Yu-Xin Cheng;Zhuo Zuo;Peng Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3359-3366
    • /
    • 2023
  • In this study, a spiking cortical model (SCM) based n-g discrimination method is proposed. The SCM-based algorithm is compared with three other methods, namely: (i) the pulse-coupled neural network (PCNN), (ii) the charge comparison, and (iii) the zero-crossing. The objective evaluation criteria used for the comparison are the FoM-value and the time consumption of discrimination. Experimental results demonstrated that our proposed method outperforms the other methods significantly with the highest FoM-value. Specifically, the proposed method exhibits a 34.81% improvement compared with the PCNN, a 50.29% improvement compared with the charge comparison, and a 110.02% improvement compared with the zero-crossing. Additionally, the proposed method features the second-fastest discrimination time, where it is 75.67% faster than the PCNN, 70.65% faster than the charge comparison and 38.4% slower than the zero-crossing. Our study also discusses the role and change pattern of each parameter of the SCM to guide the selection process. It concludes that the SCM's outstanding ability to recognize the dynamic information in the pulse signal, improved accuracy when compared to the PCNN, and better computational complexity enables the SCM to exhibit excellent n-γ discrimination performance while consuming less time.

Study on realization for objective evaluation algorithm of grade by admission office system (입학사정관제 평가점수에 대한 객관적인 평가 알고리즘 구현 연구)

  • Choi, Seungbae;Lee, Younghak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1359-1368
    • /
    • 2013
  • An "admission officer system" has been introduced for the purpose of changing the paradigm from the "current admission system". This is because the current admission system mainly reflects the scholastic ability test (SAT) score regulating student selection for entering university. The admission officer system focuses on not only the students' school records but also, their potential. In addition, this system lets the university screen the students according to its own founding philosophy. One feature of the admission officer system is to cultivate men of ability by caring for the selected students consistently. Typically, students are selected by an admission officer system according to document screening which includes curriculum and non-curriculum scores, discussions, and interviews. On the other hand, the admission officer system might create a lack of objectivity in the way a student is selected because of the admission officer's own subjectivity. In this study, an algorithm in which the admission officer system can maintain the objectivity on student selection is presented. This is so that the student does not experience any disadvantage from the process of the admission officer system.

An Intrusion Detection System based on the Artificial Neural Network for Real Time Detection (실시간 탐지를 위한 인공신경망 기반의 네트워크 침입탐지 시스템)

  • Kim, Tae Hee;Kang, Seung Ho
    • Convergence Security Journal
    • /
    • v.17 no.1
    • /
    • pp.31-38
    • /
    • 2017
  • As the cyber-attacks through the networks advance, it is difficult for the intrusion detection system based on the simple rules to detect the novel type of attacks such as Advanced Persistent Threat(APT) attack. At present, many types of research have been focused on the application of machine learning techniques to the intrusion detection system in order to detect previously unknown attacks. In the case of using the machine learning techniques, the performance of the intrusion detection system largely depends on the feature set which is used as an input to the system. Generally, more features increase the accuracy of the intrusion detection system whereas they cause a problem when fast responses are required owing to their large elapsed time. In this paper, we present a network intrusion detection system based on artificial neural network, which adopts a multi-objective genetic algorithm to satisfy the both requirements: accuracy, and fast response. The comparison between the proposing approach and previously proposed other approaches is conducted against NSL_KDD data set for the evaluation of the performance of the proposing approach.

Improving Efficiency of Food Hygiene Surveillance System by Using Machine Learning-Based Approaches (기계학습을 이용한 식품위생점검 체계의 효율성 개선 연구)

  • Cho, Sanggoo;Cho, Seung Yong
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.53-67
    • /
    • 2020
  • This study employees a supervised learning prediction model to detect nonconformity in advance of processed food manufacturing and processing businesses. The study was conducted according to the standard procedure of machine learning, such as definition of objective function, data preprocessing and feature engineering and model selection and evaluation. The dependent variable was set as the number of supervised inspection detections over the past five years from 2014 to 2018, and the objective function was to maximize the probability of detecting the nonconforming companies. The data was preprocessed by reflecting not only basic attributes such as revenues, operating duration, number of employees, but also the inspections track records and extraneous climate data. After applying the feature variable extraction method, the machine learning algorithm was applied to the data by deriving the company's risk, item risk, environmental risk, and past violation history as feature variables that affect the determination of nonconformity. The f1-score of the decision tree, one of ensemble models, was much higher than those of other models. Based on the results of this study, it is expected that the official food control for food safety management will be enhanced and geared into the data-evidence based management as well as scientific administrative system.