본 논문에서는 이종 모델의 특징맵 간 상관관계인 외부적 상관관계와 동종 모델 내부 특징맵 간 상관관계인 내부적 상관관계를 활용하여 교사 모델로부터 학생 모델로 지식을 전이하는 Internal/External Knowledge Distillation (IEKD)를 제안한다. 두 상관관계를 모두 활용하기 위하여 특징맵을 시퀀스 형태로 변환하고, 트랜스포머를 통해 내부적/외부적 상관관계를 고려하여 지식 증류에 적합한 새로운 특징맵을 추출한다. 추출된 특징맵을 증류함으로써 내부적 상관관계와 외부적 상관관계를 함께 학습할 수 있다. 또한 추출된 특징맵을 활용하여 feature matching을 수행함으로써 학생 모델의 정확도 향상을 도모한다. 제안한 지식 증류 방법의 효과를 증명하기 위해, CIFAR-100 데이터 셋에서 "ResNet-32×4/VGG-8" 교사/학생 모델 조합으로 최신 지식 증류 방법보다 향상된 76.23% Top-1 이미지 분류 정확도를 달성하였다.
본 논문은 단일 영상을 이용하여 초해상도 방법을 수행하기 위해 질감-공간 영역을 분리한 뒤 세부정보를 중심으로 특징을 분류하는 방법을 제안한다. CNN(Convolutional Neural Network) 기반의 초해상도는 세부정보를 개선하기 위한 특징 추정 과정에서의 복잡한 절차와 중복된 특징 정보의 생성으로 인해 초해상도에서 가장 중요한 기준인 품질 저하가 발생할 수 있다. 제안하는 방법은 절차적 복잡성을 줄이고 중복 특징 정보의 생성을 최소화하여 초해상도 결과의 품질을 개선하기 위해 입력 영상을 질감과 공간의 두 채널로 분리하였다. 질감 채널에서는 세부정보 복원을 위해 다중스케일로 변환한 영상에 단계별 skip-connection을 적용한 잔차 블록 구조를 적용하여 특징 정제 과정을 수행함으로써 특징 추출을 개선하였고, 공간 채널에서는 평활화된 형태의 특징을 활용하여 잡음을 제거하고 구조적 특징을 유지하도록 하였다. 제안하는 방법을 이용해 실험한 결과 기존 초해상도 방법대비 PSNR 및 SSIM 성능 평가에서 향상된 결과를 보여 품질이 개선됨을 확인할 수 있었다.
In this paper, we propose a novel knowledge distillation algorithm to create an compressed deep ensemble network coupled with the combined use of local and global features of face images. In order to transfer the capability of high-level recognition performances of the ensemble deep networks to a single deep network, the probability for class prediction, which is the softmax output of the ensemble network, is used as soft target for training a single deep network. By applying the knowledge distillation algorithm, the local feature informations obtained by training the deep ensemble network using facial subregions of the face image as input are transmitted to a single deep network to create a so-called compressed ensemble DCNN. The experimental results demonstrate that our proposed compressed ensemble deep network can maintain the recognition performance of the complex ensemble deep networks and is superior to the recognition performance of a single deep network. In addition, our proposed method can significantly reduce the storage(memory) space and execution time, compared to the conventional ensemble deep networks developed for face recognition.
근래의 초해상화 (super-resolution, SR) 연구는 네트워크를 깊고, 넓게 만들어 성능을 높이는데 주를 이뤘다. 그러나 동시에 높은 연산량과 메모리 소비량이 증가하는 문제가 발생하기 때문에 이를 실제로 하드웨어로 구현하기에는 어려운 문제가 존재한다. 그렇기에 우리는 네트워크 최적화를 통해 성능 감소를 최소화하면서 파라미터 수를 줄이는 네트워크 SqueezeSR을 설계하였다. 또한 지식 증류(Knowledge Distillation, KD)를 이용해 추가적인 파라미터 수 증가 없이 성능을 높일 수 있는 학습 방법을 제안한다. 또한 KD 시 teacher network의 성능이 보다 student network에 잘 전달되도록 feature map 간의 비교를 통해 학습 효율을 높일 수 있었다. 결과적으로 우리는 KD 기법을 통해 추가적인 파라미터 수 증가 없이 성능을 높여 다른 SR네트워크 대비 더 빠르고 성능 감소를 최소화한 네트워크를 제안한다.
Wang, Jin;Wu, Yiming;He, Shiming;Sharma, Pradip Kumar;Yu, Xiaofeng;Alfarraj, Osama;Tolba, Amr
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권11호
/
pp.4065-4083
/
2021
Super-resolution can improve the clarity of low-resolution (LR) images, which can increase the accuracy of high-level compute vision tasks. Portable devices have low computing power and storage performance. Large-scale neural network super-resolution methods are not suitable for portable devices. In order to save the computational cost and the number of parameters, Lightweight image processing method can improve the processing speed of portable devices. Therefore, we propose the Enhanced Information Multiple Distillation Network (EIMDN) to adapt lower delay and cost. The EIMDN takes feedback mechanism as the framework and obtains low level features through high level features. Further, we replace the feature extraction convolution operation in Information Multiple Distillation Block (IMDB), with Ghost module, and propose the Enhanced Information Multiple Distillation Block (EIMDB) to reduce the amount of calculation and the number of parameters. Finally, coordinate attention (CA) is used at the end of IMDB and EIMDB to enhance the important information extraction from Spaces and channels. Experimental results show that our proposed can achieve convergence faster with fewer parameters and computation, compared with other lightweight super-resolution methods. Under the condition of higher peak signal-to-noise ratio (PSNR) and higher structural similarity (SSIM), the performance of network reconstruction image texture and target contour is significantly improved.
본 연구는 증류탑 분리공정 시스템 최적화를 위하여 인공지능 머신러닝이 적용된 소프트웨어 플랫폼을 개발하였다. 증류탑 분리공정은 석유화학 산업의 대표적이고 핵심적인 공정이다. 하지만 다양한 운전조건과 연속식공정 특성으로 인하여 안정적인 운전이 어려우며 운전자 숙련도에 의하여 공정효율에 차이가 발생된다. 이를 해결하기 위하여 이론적 시뮬레이션을 활용한 제어방법이 개발되어 사용되고 있지만 특수하거나 복잡한 반응이 포함된 공정에는 적용이 어려우며, 거대한 시스템에 대하여 분석이 이루어질 경우 계산비용 증대로 인하여 실시간 제어와 연동이 어려운 한계점을 지니고 있다. 따라서 본 연구에서는 이러한 문제점을 해결하기 위하여 머신러닝을 기반으로 한 경험적 시뮬레이션 모델을 개발하고 이를 통하여 최적의 공정운영방법을 제시하고자 한다. 경험적 시뮬레이션 개발은 실제 공정에서 수집된 빅 데이터, 데이터마이닝을 통한 특성추출, 공정을 대표하는 데이터 선별, 화학공정 특성에 맞는 모델 선정으로 이루어졌으며, 현장검증 및 테스트를 통하여 증류탑 분리공정 플랫폼이 개발되었다. 최종적으로 개발된 플랫폼을 통하여 운전 조작변수의 예측이 가능하며, 최적화된 운전조건을 제공하여 효율적인 공정운영을 달성할 수 있다. 본 논문은 머신러닝 기법을 화학공정에 적용한 기초연구로서 이후 다양한 공정에 적용하여 4차 산업의 스마트 팩토리의 초석이 되어 널리 활용될 수 있을 것이라 판단된다.
This paper proposes a deep learning method for estimating the heart rate from facial videos. Our proposed method estimates remote photoplethysmography (rPPG) signals to predict the heart rate. Although there have been proposed several methods for estimating rPPG signals, most previous methods can not be utilized in low-power single board computers due to their computational complexity. To address this problem, we construct a lightweight student model and employ a knowledge distillation technique to reduce the performance degradation of a deeper network model. The teacher model consists of 795k parameters, whereas the student model only contains 24k parameters, and therefore, the inference time was reduced with the factor of 10. By distilling the knowledge of the intermediate feature maps of the teacher model, we improved the accuracy of the student model for estimating the heart rate. Experiments were conducted on the UBFC-rPPG dataset to demonstrate the effectiveness of the proposed method. Moreover, we collected our own dataset to verify the accuracy and processing time of the proposed method on a real-world dataset. Experimental results on a NVIDIA Jetson Nano board demonstrate that our proposed method can infer the heart rate in real time with the mean absolute error of 2.5183 bpm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.