• Title/Summary/Keyword: Feature Dimension

Search Result 389, Processing Time 0.03 seconds

Content-based image retrieval using adaptive representative color histogram and directional pattern histogram (적응적 대표 컬러 히스토그램과 방향성 패턴 히스토그램을 이용한 내용 기반 영상 검색)

  • Kim Tae-Su;Kim Seung-Jin;Lee Kuhn-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.119-126
    • /
    • 2005
  • We propose a new content-based image retrieval using a representative color histogram and directional pattern histogram that is adaptive to the classification characteristics of the image blocks. In the proposed method the color and pattern feature vectors are extracted according to the characteristics o: the block classification after dividing the image into blocks with a fixed size. First, the divided blocks are classified as either luminance or color blocks depending on the saturation of the block. Thereafter, the color feature vectors are extracted by calculating histograms of the block average luminance co-occurrence for the luminance block and the block average colors for the color blocks. In addition, block directional pattern feature vectors are extracted by calculating histograms after performing the directional gradient classification of the luminance. Experimental results show that the proposed method can outperform the conventional methods as regards the precision and the size of the feature vector dimension.

Music Mood Classification based on a New Feature Reduction Method and Modular Neural Network (단위 신경망과 특징벡터 차원 축소 기반의 음악 분위기 자동판별)

  • Song, Min Kyun;Kim, HyunSoo;Moon, Chang-Bae;Kim, Byeong Man;Oh, Dukhwan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.4
    • /
    • pp.25-35
    • /
    • 2013
  • This paper focuses on building a generalized mood classification model with many mood classes instead of a personalized one with few mood classes. Two methods are adopted to improve the performance of mood classification. The one of them is feature reduction based on standard deviation of feature values, which is designed to solve the problem of lowered performance when all 391 features provided by MIR toolbox used to extract features of music. The experiments show that the feature reduction methods suggested in this paper have better performance than that of the conventional dimension reduction methods, R-Square and PCA. As performance improvement by feature reduction only is subject to limit, modular neural network is used as another method to improve the performance. The experiments show that the method also improves performance effectively.

A GENETIC ALGORITHM BASED FEATURE EXTRACTION TECHNIQUE FOR HYPERSPECTRAL IMAGERY

  • Ryu Byong Tae;Kim Choon-Woo;Kim Hakil;Lee Kyu Sung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.209-212
    • /
    • 2005
  • Hyperspectral data consists of more than 200 spectral bands that are highly correlated. In order to utilize hyperspectral data for classification, dimensional reduction or feature extraction is desired. By applying feature extraction, computational complexity of classification can be reduced and classification accuracy may be improved. In this paper, a genetic algorithm based feature extraction technique is proposed. Measure from discriminant analysis is utilized as optimization criterion. A subset of spectral bands is selected by genetic algorithm. Dimension of feature space is further reduced by linear transformation. Feasibility of the proposed technique is evaluated with AVIRIS data.

  • PDF

Parts-Based Feature Extraction of Spectrum of Speech Signal Using Non-Negative Matrix Factorization

  • Park, Jeong-Won;Kim, Chang-Keun;Lee, Kwang-Seok;Koh, Si-Young;Hur, Kang-In
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.4
    • /
    • pp.209-212
    • /
    • 2003
  • In this paper, we proposed new speech feature parameter through parts-based feature extraction of speech spectrum using Non-Negative Matrix Factorization (NMF). NMF can effectively reduce dimension for multi-dimensional data through matrix factorization under the non-negativity constraints, and dimensionally reduced data should be presented parts-based features of input data. For speech feature extraction, we applied Mel-scaled filter bank outputs to inputs of NMF, than used outputs of NMF for inputs of speech recognizer. From recognition experiment result, we could confirm that proposed feature parameter is superior in recognition performance than mel frequency cepstral coefficient (MFCC) that is used generally.

Emotion Recognition and Expression Method using Bi-Modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 감정인식 및 표현기법)

  • Joo, Jong-Tae;Jang, In-Hun;Yang, Hyun-Chang;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.754-759
    • /
    • 2007
  • In this paper, we proposed the Bi-Modal Sensor Fusion Algorithm which is the emotional recognition method that be able to classify 4 emotions (Happy, Sad, Angry, Surprise) by using facial image and speech signal together. We extract the feature vectors from speech signal using acoustic feature without language feature and classify emotional pattern using Neural-Network. We also make the feature selection of mouth, eyes and eyebrows from facial image. and extracted feature vectors that apply to Principal Component Analysis(PCA) remakes low dimension feature vector. So we proposed method to fused into result value of emotion recognition by using facial image and speech.

Specific Material Detection with Similar Colors using Feature Selection and Band Ratio in Hyperspectral Image (초분광 영상 특징선택과 밴드비 기법을 이용한 유사색상의 특이재질 검출기법)

  • Shim, Min-Sheob;Kim, Sungho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1081-1088
    • /
    • 2013
  • Hyperspectral cameras acquire reflectance values at many different wavelength bands. Dimensions tend to increase because spectral information is stored in each pixel. Several attempts have been made to reduce dimensional problems such as the feature selection using Adaboost and dimension reduction using the Simulated Annealing technique. We propose a novel material detection method that consists of four steps: feature band selection, feature extraction, SVM (Support Vector Machine) learning, and target and specific region detection. It is a combination of the band ratio method and Simulated Annealing algorithm based on detection rate. The experimental results validate the effectiveness of the proposed feature selection and band ratio method.

Chaotic Evaluation of Slag Inclusion Welding Defect Time Series Signals Considering the Hyperspace (초공간을 고려한 슬래그 혼입 용접 결함 시계열 신호의 카오스성 평가)

  • Yi, Won;Yun, In-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.226-235
    • /
    • 1998
  • This study proposes the analysis and evaluation of method of time series of ultrasonic signal using the chaotic feature extraction for ultrasonic pattern recognition. The features are extracted from time series data for analysis of weld defects quantitatively. For this purpose, analysis objectives in this study are fractal dimension, Lyapunov exponent, and strange attractor on hyperspace. The Lyapunov exponent is a measure of rate in which phase space diverges nearby trajectories. Chaotic trajectories have at least one positive Lyapunov exponent, and the fractal dimension appears as a metric space such as the phase space trajectory of a dynamical system. In experiment, fractal(correlation) dimensions and Lyapunov exponents show the mean value of 4.663, and 0.093 relatively in case of learning, while the mean value of 4.926, and 0.090 in case of testing in slag inclusion(weld defects) are shown. Therefore, the proposed chaotic feature extraction can be enhancement of precision rate for ultrasonic pattern recognition in defecting signals of weld zone, such as slag inclusion.

  • PDF

Defect evaluations of weld zone in rails considering phase space-frequency demain (위상공간-주파수 영역을 고려한 레일 용접부의 결함 평가)

  • 윤인식;권성태;장영권;정우현;이찬석
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.2
    • /
    • pp.21-30
    • /
    • 1999
  • This study proposes the analysis and evaluation method of time series ultrasonic signal using the phase space-frequency domain. Features extracted from time series signal analyze quantitatively characteristics of weld defects. For this purpose, analysis objectives in this study are features of time domain and frequency domain. Trajectory changes in the attractor indicated a substantial difference in fractal characteristics resulting from distance shifts such as parts of head and flange even though the types of defects are identified. These differences in characteristics of weld defects enables the evaluation of unique characteristics of defects in the weld zone. In quantitative fractal feature extraction, feature values of 3.848 in the case of part of head(crack) and 4.102 in the case of part of web(side hole) and 3.711 in the case of part of flange(crack) were proposed on the basis of fractal dimension. Proposed phase space-frequency domain method in this study can integrity evaluation for defect signals of rail weld zone such as side hole and crack.

  • PDF

Construction of Chaoral Post-Process System for Integrity Evaluation of Weld Zone (용접부 건전성 평가를 위한 카오럴 후처리 시스템의 구축)

  • Lee, Won;Yoon, In-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.11
    • /
    • pp.152-165
    • /
    • 1998
  • This study proposes the analysis and evaluation method of time series ultrasonic signal using the chaoral post-process system for precision rate enhancement of ultrasonic pattern recognition. Chaos features extracted from time series data for analysis quantitatively weld defects For this purpose, feature extraction objectives in this study are fractal dimension, Lyapunov exponent, shape of strange attrator. Trajectory changes in the strange attractor indicated that even same type of defects carried substantial difference in chaoticity resulting from distance shifts such as nearby 0.5, 1.0 skip distance. Such difference in chaoticity enables the evaluation of unique features of defects in the weld zone. In quantitative chaos fenture extraction, feature values of 0.835 and 0.823 in the case of slag inclusion and 0.609 and 0.573 in the case of crack were suggested on the basis of fractal dimension and Lyapunov exponent. Proposed chaoral post-process system in this study can enhances precision rate of ultrasonic pattern recognition results from defect signals of weld zone, such as slag inclusion and crack.

  • PDF

A Comparative Study on the Whole Rock Magnetic Susceptibility and SHRIMP Zircon U-Pb Geochronology of the Domestic Dimension Stone and Chinese similar Dimension Stone (전암대자율 특성과 SHRIMP 저어콘 U-Pb 연대 측정을 통한 국내 석재와 중국 유사 석재의 비교 연구)

  • Kim, Kun-Ki;Jwa, Yong-Joo;Hong, Sei-Sun;Lee, Ki-Wook
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.273-289
    • /
    • 2015
  • This study used the petrological features and the whole rock susceptibility characteristics suggest ways to determine the domestic dimension stones and Chinese similar dimension stones. In addition, this study compare the intrusive period by measuring the zircon U-Pb age of these stones. Result of comparing the petrological feature, with the exception of Macheon stone and Boryeong stone to show the differences in mineral composition and texture under a microscope, the domestic dimension stones and Chinese similar dimension stones exhibit substantially the same petrological feature. According to the measurement results for the whole rock magnetic susceptibility, Goheong, Iksan, Pocheon stones are the similar as Chinese dimension stones, and other stones are easily distinguished. The zircon U-Pb age results for Geochang, Iksan, and Pocheon stones are equivalent to the Jurassic Daebo granites and G603, G633, G655 are the Cretaceous granites. Therefore, the domestic dimension stones and Chinese similar dimension stones can be clearly determined by the zircon U-Pb age results.