• Title/Summary/Keyword: Feature Dimension

Search Result 389, Processing Time 0.032 seconds

Construction fo chaos simulator for ultrasonic pattern recognition evaluation of weld zone in austenitic stainless steel 304 (오스테나이트계 스테인리스강 304 용접부의 초음파 형상 인식 평가를 위한 카오스 시뮬레이터의 구축)

  • Yi, Won;Yun, In-Sik;Chang, Young-Kwon
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.108-118
    • /
    • 1998
  • This study proposes th analysis and evaluation method of time series ultrasonic signal using the chaos feature extraction for ultrasonic pattern recognition. Features extracted from time series data using the chaos time series signal analyze quantitatively weld defects. For this purpose, analysis objective in this study is fractal dimension and Lyapunov exponent. Trajectory changes in the strange attractor indicated that even same type of defects carried substantial difference in chaosity resulting from distance shifts such as 0.5 and 1.0 skip distance. Such differences in chaosity enables the evaluation of unique features of defects in the weld zone. In quantitative chaos feature extraction, feature values of 4.511 and 0.091 in the case of side hole and 4.539 and 0.115 in the case of vertical hole were proposed on the basis of fractal dimension and Lyapunov exponent. Proposed chaos feature extraction in this study can enhances ultrasonic pattern recognition results from defect signals of weld zone such as side hole and vertical hole.

  • PDF

Image Retrieval Using Directional Features (방향성 특징을 이용한 이미지 검색)

  • Jung, Ho-Young;Whang, Whan-Kyu
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.207-211
    • /
    • 2000
  • For efficient massive image retrieval, an image retrieval requires that several important objectives are satisfied, namely: automated extraction of features, efficient indexing and effective retrieval. In this work, we present a technique for extracting the 4-dimension directional feature. By directional detail, we imply strong directional activity in the horizontal, vertical and diagonal direction present in region of the image texture. This directional information also present smoothness of region. The 4-dimension feature is only indexed in the 4-D space so that complex high-dimensional indexing can be avoided.

  • PDF

A Study on the Feature Extraction of Pattern Recognition for Weld Defects Evaluation of Titanium Weld Zone (티타늄 용접부의 용접결함평가를 위한 형상인식 특징추출에 관한 연구)

  • Yun, In-Sik
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.17-22
    • /
    • 2011
  • This study proposes feature extraction method of pattern recognition by evaluation of weld defects in weld zone of titanium. For this purpose, analysis objectives in this study are features of attractor quadrant and fractal dimension. Trajectory changes in the attractor indicated a substantial difference in fractal characteristics resulting from distance shifts such as porosity of weld zone. These differences in characteristics of weld defects enables the evaluation of unique characteristics of defects in the weld zone. In quantitative fractal feature extraction, feature values of 0.87 and 1.00 in the case of part of 0.5 skip distance and 0.72 and 0.93 in the case of part of 1.0 skip distance were proposed on the basis of fractal dimensions. Attractor quadrant point, feature values of 1.322 and 1.172 in the case of ${\phi}1{\times}3mm$ porosity and 2.264 and 307 in the case of ${\phi}3{\times}3mm$ porosity were proposed on the basis of distribution value. The Proposed feature extraction of pattern recognition in this study can be used for safety evaluation of weld zone in titanium.

Human Gait Recognition Based on Spatio-Temporal Deep Convolutional Neural Network for Identification

  • Zhang, Ning;Park, Jin-ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.927-939
    • /
    • 2020
  • Gait recognition can identify people's identity from a long distance, which is very important for improving the intelligence of the monitoring system. Among many human features, gait features have the advantages of being remotely available, robust, and secure. Traditional gait feature extraction, affected by the development of behavior recognition, can only rely on manual feature extraction, which cannot meet the needs of fine gait recognition. The emergence of deep convolutional neural networks has made researchers get rid of complex feature design engineering, and can automatically learn available features through data, which has been widely used. In this paper,conduct feature metric learning in the three-dimensional space by combining the three-dimensional convolution features of the gait sequence and the Siamese structure. This method can capture the information of spatial dimension and time dimension from the continuous periodic gait sequence, and further improve the accuracy and practicability of gait recognition.

Crack location in beams by data fusion of fractal dimension features of laser-measured operating deflection shapes

  • Bai, R.B.;Song, X.G.;Radzienski, M.;Cao, M.S.;Ostachowicz, W.;Wang, S.S.
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.975-991
    • /
    • 2014
  • The objective of this study is to develop a reliable method for locating cracks in a beam using data fusion of fractal dimension features of operating deflection shapes. The Katz's fractal dimension curve of an operating deflection shape is used as a basic feature of damage. Like most available damage features, the Katz's fractal dimension curve has a notable limitation in characterizing damage: it is unresponsive to damage near the nodes of structural deformation responses, e.g., operating deflection shapes. To address this limitation, data fusion of Katz's fractal dimension curves of various operating deflection shapes is used to create a sophisticated fractal damage feature, the 'overall Katz's fractal dimension curve'. This overall Katz's fractal dimension curve has the distinctive capability of overcoming the nodal effect of operating deflection shapes so that it maximizes responsiveness to damage and reliability of damage localization. The method is applied to the detection of damage in numerical and experimental cases of cantilever beams with single/multiple cracks, with high-resolution operating deflection shapes acquired by a scanning laser vibrometer. Results show that the overall Katz's fractal dimension curve can locate single/multiple cracks in beams with significantly improved accuracy and reliability in comparison to the existing method. Data fusion of fractal dimension features of operating deflection shapes provides a viable strategy for identifying damage in beam-type structures, with robustness against node effects.

A Novel Statistical Feature Selection Approach for Text Categorization

  • Fattah, Mohamed Abdel
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1397-1409
    • /
    • 2017
  • For text categorization task, distinctive text features selection is important due to feature space high dimensionality. It is important to decrease the feature space dimension to decrease processing time and increase accuracy. In the current study, for text categorization task, we introduce a novel statistical feature selection approach. This approach measures the term distribution in all collection documents, the term distribution in a certain category and the term distribution in a certain class relative to other classes. The proposed method results show its superiority over the traditional feature selection methods.

Feature Extraction by Optimizing the Cepstral Resolution of Frequency Sub-bands (주파수 부대역의 켑스트럼 해상도 최적화에 의한 특징추출)

  • 지상문;조훈영;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2003
  • Feature vectors for conventional speech recognition are usually extracted in full frequency band. Therefore, each sub-band contributes equally to final speech recognition results. In this paper, feature Teeters are extracted indepedently in each sub-band. The cepstral resolution of each sub-band feature is controlled for the optimal speech recognition. For this purpose, different dimension of each sub-band ceptral vectors are extracted based on the multi-band approach, which extracts feature vector independently for each sub-band. Speech recognition rates and clustering quality are suggested as the criteria for finding the optimal combination of sub-band Teeter dimension. In the connected digit recognition experiments using TIDIGITS database, the proposed method gave string accuracy of 99.125%, 99.775% percent correct, and 99.705% percent accuracy, which is 38%, 32% and 37% error rate reduction relative to baseline full-band feature vector, respectively.

Feature Selection to Mine Joint Features from High-dimension Space for Android Malware Detection

  • Xu, Yanping;Wu, Chunhua;Zheng, Kangfeng;Niu, Xinxin;Lu, Tianling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4658-4679
    • /
    • 2017
  • Android is now the most popular smartphone platform and remains rapid growth. There are huge number of sensitive privacy information stored in Android devices. Kinds of methods have been proposed to detect Android malicious applications and protect the privacy information. In this work, we focus on extracting the fine-grained features to maximize the information of Android malware detection, and selecting the least joint features to minimize the number of features. Firstly, permissions and APIs, not only from Android permissions and SDK APIs but also from the developer-defined permissions and third-party library APIs, are extracted as features from the decompiled source codes. Secondly, feature selection methods, including information gain (IG), regularization and particle swarm optimization (PSO) algorithms, are used to analyze and utilize the correlation between the features to eliminate the redundant data, reduce the feature dimension and mine the useful joint features. Furthermore, regularization and PSO are integrated to create a new joint feature mining method. Experiment results show that the joint feature mining method can utilize the advantages of regularization and PSO, and ensure good performance and efficiency for Android malware detection.

Feature Selection Based on Class Separation in Handwritten Numeral Recognition Using Neural Network (신경망을 이용한 필기 숫자 인식에서 부류 분별에 기반한 특징 선택)

  • Lee, Jin-Seon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.2
    • /
    • pp.543-551
    • /
    • 1999
  • The primary purposes in this paper are to analyze the class separation of features in handwritten numeral recognition and to make use of the results in feature selection. Using the Parzen window technique, we compute the class distributions and define the class separation to be the overlapping distance of two class distributions. The dimension of a feature vector is reduced by removing the void or redundant feature cells based on the class separation information. The experiments have been performed on the CENPARMI handwritten numeral database, and partial classification and full classification have been tested. The results show that the class separation is very effective for the feature selection in the 10-class handwritten numeral recognition problem since we could reduce the dimension of the original 256-dimensional feature vector by 22%.

  • PDF

Feature Analysis of Multi-Channel Time Series EEG Based on Incremental Model (점진적 모델에 기반한 다채널 시계열 데이터 EEG의 특징 분석)

  • Kim, Sun-Hee;Yang, Hyung-Jeong;Ng, Kam Swee;Jeong, Jong-Mun
    • The KIPS Transactions:PartB
    • /
    • v.16B no.1
    • /
    • pp.63-70
    • /
    • 2009
  • BCI technology is to control communication systems or machines by brain signal among biological signals followed by signal processing. For the implementation of BCI systems, it is required that the characteristics of brain signal are learned and analyzed in real-time and the learned characteristics are applied. In this paper, we detect feature vector of EEG signal on left and right hand movements based on incremental approach and dimension reduction using the detected feature vector. In addition, we show that the reduced dimension can improve the classification performance by removing unnecessary features. The processed data including sufficient features of input data can reduce the time of processing and boost performance of classification by removing unwanted features. Our experiments using K-NN classifier show the proposed approach 5% outperforms the PCA based dimension reduction.