• 제목/요약/키워드: Feature Classification

검색결과 2,173건 처리시간 0.03초

Classification of Cognitive States from fMRI data using Fisher Discriminant Ratio and Regions of Interest

  • Do, Luu Ngoc;Yang, Hyung Jeong
    • International Journal of Contents
    • /
    • 제8권4호
    • /
    • pp.56-63
    • /
    • 2012
  • In recent decades, analyzing the activities of human brain achieved some accomplishments by using the functional Magnetic Resonance Imaging (fMRI) technique. fMRI data provide a sequence of three-dimensional images related to human brain's activity which can be used to detect instantaneous cognitive states by applying machine learning methods. In this paper, we propose a new approach for distinguishing human's cognitive states such as "observing a picture" versus "reading a sentence" and "reading an affirmative sentence" versus "reading a negative sentence". Since fMRI data are high dimensional (about 100,000 features in each sample), extremely sparse and noisy, feature selection is a very important step for increasing classification accuracy and reducing processing time. We used the Fisher Discriminant Ratio to select the most powerful discriminative features from some Regions of Interest (ROIs). The experimental results showed that our approach achieved the best performance compared to other feature extraction methods with the average accuracy approximately 95.83% for the first study and 99.5% for the second study.

A Novel Model for Smart Breast Cancer Detection in Thermogram Images

  • Kazerouni, Iman Abaspur;Zadeh, Hossein Ghayoumi;Haddadnia, Javad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권24호
    • /
    • pp.10573-10576
    • /
    • 2015
  • Background: Accuracy in feature extraction is an important factor in image classification and retrieval. In this paper, a breast tissue density classification and image retrieval model is introduced for breast cancer detection based on thermographic images. The new method of thermographic image analysis for automated detection of high tumor risk areas, based on two-directional two-dimensional principal component analysis technique for feature extraction, and a support vector machine for thermographic image retrieval was tested on 400 images. The sensitivity and specificity of the model are 100% and 98%, respectively.

근전도 신호를 이용한 보행 패턴 분류 (Gait Pattern Classification using EMG Signal)

  • 지연주;송신우;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.115-115
    • /
    • 2000
  • A gait pattern classification method using electromyography(EMG) signal is presented. The gait pattern with four stages such as stance, heel-off, swing and heel-strike is analyzed and classified using feature parameters such as zero-crossing, integral absolute value and variance of the EMG signal. The EMG signal from Tibialis Anterior and Gastrocnemius muscles was obtained using the surface electrodes, and low-pass filtered at 10kHz. The filtered analog signal was sampled at every 0.5msec and converted to digital signal with 12-bit resolution. The obtained data is analyzed and classified in terms of feature parameters. Analysis results are given to show that the gait patterns classified by the proposed method are feasible.

  • PDF

A Wrist-Type Fall Detector with Statistical Classifier for the Elderly Care

  • Park, Chan-Kyu;Kim, Jae-Hong;Sohn, Joo-Chan;Choi, Ho-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제5권10호
    • /
    • pp.1751-1768
    • /
    • 2011
  • Falls are one of the most concerned accidents for elderly people and often result in serious physical and psychological consequences. Many researchers have studied fall detection techniques in various domain, however none released to a commercial product satisfying user requirements. We present a systematic modeling and evaluating procedure for best classification performance and then do experiments for comparing the performance of six procedures to get a statistical classifier based wrist-type fall detector to prevent dangerous consequences from falls. Even though the wrist may be the most difficult measurement location on the body to discern a fall event, the proposed feature deduction process and fall classification procedures shows positive results by using data sets of fall and general activity as two classes.

Wavelet frame 변환을 이용한 냉연 시각검사 알고리듬 (Visual inspection algorithm of cold rolled strips by wavelet frame transform)

  • 이창수;최종호
    • 제어로봇시스템학회논문지
    • /
    • 제4권3호
    • /
    • pp.372-377
    • /
    • 1998
  • This paper deals with the detection, feature extraction and classification of surface defects in cold rolled strips. Inspection systems are one of the most important fields in factory automation. Defects such as slipmark and dullmark can be effectively detected with a Gaussian matched filter because their shapes are similar to Gaussian. It is justified that the proposed WF(Wavelet Frame) method could be regarded as multiscale Gaussian matched filter which can be applied to the inspection of cold rolled strip. After a wavelet frame transform, the entropies and moments are computed for each subband which pass through both local low pass filter and nonlinear operator. With these features as input, a MLP(Multi Layer Perceptron) is used as a classifier. The proposed inspection method was applied to the real images with defects, and hence showed good performance. The role of each extracted feature is analyzed by KLT(Karhunen-Loeve Transform).

  • PDF

Hybrid Pattern Recognition Using a Combination of Different Features

  • Choi, Sang-Il
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권11호
    • /
    • pp.9-16
    • /
    • 2015
  • We propose a hybrid pattern recognition method that effectively combines two different features for improving data classification. We first extract the PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) features, both of which are widely used in pattern recognition, to construct a set of basic features, and then evaluate the separability of each basic feature. According to the results of evaluation, we select only the basic features that contain a large amount of discriminative information for construction of the combined features. The experimental results for the various data sets in the UCI machine learning repository show that using the proposed combined features give better recognition rates than when solely using the PCA or LDA features.

Multimodal Biometric Using a Hierarchical Fusion of a Person's Face, Voice, and Online Signature

  • Elmir, Youssef;Elberrichi, Zakaria;Adjoudj, Reda
    • Journal of Information Processing Systems
    • /
    • 제10권4호
    • /
    • pp.555-567
    • /
    • 2014
  • Biometric performance improvement is a challenging task. In this paper, a hierarchical strategy fusion based on multimodal biometric system is presented. This strategy relies on a combination of several biometric traits using a multi-level biometric fusion hierarchy. The multi-level biometric fusion includes a pre-classification fusion with optimal feature selection and a post-classification fusion that is based on the similarity of the maximum of matching scores. The proposed solution enhances biometric recognition performances based on suitable feature selection and reduction, such as principal component analysis (PCA) and linear discriminant analysis (LDA), as much as not all of the feature vectors components support the performance improvement degree.

자기 조직화 신경망을 이용한 음성 신호의 감정 특징 패턴 분류 알고리즘 (Emotion Feature Pattern Classification Algorithm of Speech Signal using Self Organizing Map)

  • 주종태;박창현;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.179-182
    • /
    • 2006
  • 현재 감정을 인식할 수 있는 방법으로는 음성, 뇌파, 심박, 표정 등 많은 방법들이 존재한다. 본 논문은 이러한 방법 중 음성 신호를 이용한 방법으로써 특징들은 크게 피치, 에너지, 포만트 3가지 특징 점을 고려하였으며 이렇게 다양한 특징들을 사용하는 이유는 아직 획기적인 특징점이 정립되지 않았기 때문이며 이러한 선택의 문제를 해결하기 위해 본 논문에서는 특징 선택 방법 중 Multi Feature Selection(MFS) 방법을 사용하였으며 학습 알고리즘은 Self Organizing Map 알고리즘을 이용하여 음성 신호의 감정 특징 패턴을 분류하는 방법을 제안한다.

  • PDF

Texture Analysis for Classifying Normal Tissue, Benign and Malignant Tumors from Breast Ultrasound Image

  • Eom, Sang-Hee;Ye, Soo-Young
    • Journal of information and communication convergence engineering
    • /
    • 제20권1호
    • /
    • pp.58-64
    • /
    • 2022
  • Breast ultrasonic reading is critical as a primary screening test for the early diagnosis of breast cancer. However, breast ultrasound examinations show significant differences in diagnosis based on the difference in image quality according to the ultrasonic equipment, experience, and proficiency of the examiner. Accordingly, studies are being actively conducted to analyze the texture characteristics of normal breast tissue, positive tumors, and malignant tumors using breast ultrasonography and to use them for computer-assisted diagnosis. In this study, breast ultrasonography was conducted to select 247 ultrasound images of 71 normal breast tissues, 87 fibroadenomas among benign tumors, and 89 malignant tumors. The selected images were calculated using a statistical method with 21 feature parameters extracted using the gray level co-occurrence matrix algorithm, and classified as normal breast tissue, benign tumor, and malignancy. In addition, we proposed five feature parameters that are available for computer-aided diagnosis of breast cancer classification. The average classification rate for normal breast tissue, benign tumors, and malignant tumors, using this feature parameter, was 82.8%.

동공크기 변화신호의 STFT와 CNN을 이용한 2차원 감성분류 (2D Emotion Classification using Short-Time Fourier Transform of Pupil Size Variation Signals and Convolutional Neural Network)

  • 이희재;이다빛;이상국
    • 한국멀티미디어학회논문지
    • /
    • 제20권10호
    • /
    • pp.1646-1654
    • /
    • 2017
  • Pupil size variation can not be controlled intentionally by the user and includes various features such as the blinking frequency and the duration of a blink, so it is suitable for understanding the user's emotional state. In addition, an ocular feature based emotion classification method should be studied for virtual and augmented reality, which is expected to be applied to various fields. In this paper, we propose a novel emotion classification based on CNN with pupil size variation signals which include not only various ocular feature information but also time information. As a result, compared to previous studies using the same database, the proposed method showed improved results of 5.99% and 12.98% respectively from arousal and valence emotion classification.