Monitoring fetal growth in utero is crucial to anomaly diagnosis. However, current computer-vision models struggle to accurately assess the key metrics (i.e., head circumference and occipitofrontal and biparietal diameters) from ultrasound images, largely owing to a lack of training data. Mitigation usually entails image augmentation (e.g., flipping, rotating, scaling, and translating). Nevertheless, the accuracy of our task remains insufficient. Hence, we offer a U-Net fetal head measurement tool that leverages a hybrid Dice and binary cross-entropy loss to compute the similarity between actual and predicted segmented regions. Ellipse-fitted two-dimensional ultrasound images acquired from the HC18 dataset are input, and their lower feature layers are reused for efficiency. During regression, a novel region of interest pooling layer extracts elliptical feature maps, and during segmentation, feature pyramids fuse field-layer data with a new scale attention method to reduce noise. Performance is measured by Dice similarity, mean pixel accuracy, and mean intersection-over-union, giving 97.90%, 99.18%, and 97.81% scores, respectively, which match or outperform the best U-Net models.
International Journal of Computer Science & Network Security
/
v.23
no.12
/
pp.1-12
/
2023
Ensuring the security of Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems (ICS) is paramount to safeguarding the reliability and safety of critical infrastructure. This paper addresses the significant threat posed by reconnaissance attacks on SCADA/ICS networks and presents an innovative methodology for enhancing their protection. The proposed approach strategically employs imbalance dataset handling techniques, ensemble methods, and feature engineering to enhance the resilience of SCADA/ICS systems. Experimentation and analysis demonstrate the compelling efficacy of our strategy, as evidenced by excellent model performance characterized by good precision, recall, and a commendably low false negative (FN). The practical utility of our approach is underscored through the evaluation of real-world SCADA/ICS datasets, showcasing superior performance compared to existing methods in a comparative analysis. Moreover, the integration of feature augmentation is revealed to significantly enhance detection capabilities. This research contributes to advancing the security posture of SCADA/ICS environments, addressing a critical imperative in the face of evolving cyber threats.
As a research establish reservoir safety operation for small dam systems. This study presents hydrologic analysis conducted in the Duckdong and Bomun dam watershed based on various rainfall data and increase inflow. Especially the Duckdong dam without flood control feature are widely exposed to the risk of flooding, thus it is constructed emergency gate at present. In this study reservoir routing program was simulation for basin runoff estimating using HEC-HMS model, the model simulation the reservoir condition of emergency Sate with and without. At the reservoir analysis results is the Duckdong dam average storage decrease $20\%$ with emergency gate than without emergency gate. Also, the Bomun dam is not affected by the Duckdong flood control augmentation.
Journal of information and communication convergence engineering
/
v.16
no.3
/
pp.173-178
/
2018
Accurate classification of cloud images is a challenging task. Almost all the existing methods rely on hand-crafted feature extraction. Their limitation is low discriminative power. In the recent years, deep learning with convolution neural networks (CNNs), which can auto extract features, has achieved promising results in many computer vision and image understanding fields. However, deep learning approaches usually need large datasets. This paper proposes a deep learning approach for classification of cloud image patches on small datasets. First, we design a suitable deep learning model for small datasets using a CNN, and then we apply data augmentation and dropout regularization techniques to increase the generalization of the model. The experiments for the proposed approach were performed on SWIMCAT small dataset with k-fold cross-validation. The experimental results demonstrated perfect classification accuracy for most classes on every fold, and confirmed both the high accuracy and the robustness of the proposed model.
In this paper, we propose facial expression recognition using CNN (Convolutional Neural Network), one of the deep learning technologies. The proposed structure has general classification performance for any environment or subject. For this purpose, we collect a variety of databases and organize the database into six expression classes such as 'expressionless', 'happy', 'sad', 'angry', 'surprised' and 'disgusted'. Pre-processing and data augmentation techniques are applied to improve training efficiency and classification performance. In the existing CNN structure, the optimal structure that best expresses the features of six facial expressions is found by adjusting the number of feature maps of the convolutional layer and the number of nodes of fully-connected layer. The experimental results show good classification performance compared to the state-of-the-arts in experiments of the cross validation and the cross database. Also, compared to other conventional models, it is confirmed that the proposed structure is superior in classification performance with less execution time.
Determining whether an autonomous self-driving agent is in the middle of an intersection can be extremely difficult when relying on visual input taken from a single camera. In such a problem setting, a wider range of views is essential, which drives us to use three cameras positioned in the front, left, and right of an agent for better intersection recognition. However, collecting adequate training data with three cameras poses several practical difficulties; hence, we propose using data collected from one camera to train a three-camera model, which would enable us to more easily compile a variety of training data to endow our model with improved generalizability. In this work, we provide three separate fusion methods (feature, early, and late) of combining the information from three cameras. Extensive pedestrian-view intersection classification experiments show that our feature fusion model provides an area under the curve and F1-score of 82.00 and 46.48, respectively, which considerably outperforms contemporary three- and one-camera models.
This paper proposes a method to insert virtual objects into a real video stream based on feature tracking and camera pose estimation from a set of single-camera video frames. To insert or modify 3D shapes to target video frames, the transformation from the 3D objects to the projection of the objects onto the video frames should be revealed. It is shown that, without a camera calibration process, the 3D reconstruction is possible using multiple images from a single camera under the fixed internal camera parameters. The proposed approach is based on the simplification of the camera matrix of intrinsic parameters and the use of projective geometry. The method is particularly useful for augmented reality applications to insert or modify models to a real video stream. The proposed method is based on a linear parameter estimation approach for the auto-calibration step and it enhances the stability and reduces the execution time. Several experimental results are presented on real-world video streams, demonstrating the usefulness of our method for the augmented reality applications.
The serial arc is one of factors causing electrical fires. Over past decades, various researches have been carried out to detect arc occurrences. Even though frequency analysis, wavelet, and statistical features have been used, additional steps such as transformation and feature extraction are required. On the contrary, deep learning models directly use the raw data without any feature extraction processes. Therefore, the usage of time-domain data is preferred, but the performance is not satisfactory. To solve this problem, subsequent 1-D signals are transformed into 2-D data that can feed into a convolutional neural network (CNN). Experiments validated that CNN model outperforms deep neural network (DNN) by the classification accuracy of 8.6%. In addition, data augmentation is utilized, resulting in the accuracy improvement by 14%.
As power consumption is maximized, research on augmented reality-based monitoring systems for on-site facility managers to maintain and repair power facilities is being actively conducted as individual power brokerages and power production facilities increase. However, in the case of existing augmented reality-based monitoring systems, it is difficult to accurately detect patterns due to problems such as external environment, facility complexity, and interference with the lighting environment, and it is not possible to match various sensing information and service information for power facilities to one pattern. there is a problem. For this reason, since sensor information is matched using a single image pattern for each sensor of a power facility, a plurality of image patterns are required to augment and provide all information. In this paper, we propose a single image pattern arrangement method that matches and provides a plurality of information through an array combination of feature patterns in a single image composed of a plurality of feature patterns.
Kim, GyeongMin;Kim, Kuekyeng;Jo, Jaechoon;Lim, HeuiSeok
Journal of the Korea Convergence Society
/
v.9
no.12
/
pp.47-52
/
2018
Named Entity Recognition is a system that extracts entity names such as Persons(PS), Locations(LC), and Organizations(OG) that can have a unique meaning from a document and determines the categories of extracted entity names. Recently, Bi-LSTM-CRF, which is a combination of CRF using the transition probability between output data from LSTM-based Bi-LSTM model considering forward and backward directions of input data, showed excellent performance in the study of object name recognition using deep-learning, and it has a good performance on the efficient embedding vector creation by character and word unit and the model using CNN and LSTM. In this research, we describe the Bi-LSTM-CNN-CRF model that enhances the features of the Korean named entity recognition system and propose a method for constructing the traditional culture corpus. We also present the results of learning the constructed corpus with the feature augmentation model for the recognition of Korean object names.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.