Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering (사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법)
-
- Journal of Intelligence and Information Systems
- /
- v.19 no.2
- /
- pp.1-20
- /
- 2013
Nowadays, social network is a huge communication platform for providing people to connect with one another and to bring users together to share common interests, experiences, and their daily activities. Users spend hours per day in maintaining personal information and interacting with other people via posting, commenting, messaging, games, social events, and applications. Due to the growth of user's distributed information in social network, there is a great potential to utilize the social data to enhance the quality of recommender system. There are some researches focusing on social network analysis that investigate how social network can be used in recommendation domain. Among these researches, we are interested in taking advantages of the interaction between a user and others in social network that can be determined and known as social relationship. Furthermore, mostly user's decisions before purchasing some products depend on suggestion of people who have either the same preferences or closer relationship. For this reason, we believe that user's relationship in social network can provide an effective way to increase the quality in prediction user's interests of recommender system. Therefore, social relationship between users encountered from social network is a common factor to improve the way of predicting user's preferences in the conventional approach. Recommender system is dramatically increasing in popularity and currently being used by many e-commerce sites such as Amazon.com, Last.fm, eBay.com, etc. Collaborative filtering (CF) method is one of the essential and powerful techniques in recommender system for suggesting the appropriate items to user by learning user's preferences. CF method focuses on user data and generates automatic prediction about user's interests by gathering information from users who share similar background and preferences. Specifically, the intension of CF method is to find users who have similar preferences and to suggest target user items that were mostly preferred by those nearest neighbor users. There are two basic units that need to be considered by CF method, the user and the item. Each user needs to provide his rating value on items i.e. movies, products, books, etc to indicate their interests on those items. In addition, CF uses the user-rating matrix to find a group of users who have similar rating with target user. Then, it predicts unknown rating value for items that target user has not rated. Currently, CF has been successfully implemented in both information filtering and e-commerce applications. However, it remains some important challenges such as cold start, data sparsity, and scalability reflected on quality and accuracy of prediction. In order to overcome these challenges, many researchers have proposed various kinds of CF method such as hybrid CF, trust-based CF, social network-based CF, etc. In the purpose of improving the recommendation performance and prediction accuracy of standard CF, in this paper we propose a method which integrates traditional CF technique with social relationship between users discovered from user's behavior in social network i.e. Facebook. We identify user's relationship from behavior of user such as posts and comments interacted with friends in Facebook. We believe that social relationship implicitly inferred from user's behavior can be likely applied to compensate the limitation of conventional approach. Therefore, we extract posts and comments of each user by using Facebook Graph API and calculate feature score among each term to obtain feature vector for computing similarity of user. Then, we combine the result with similarity value computed using traditional CF technique. Finally, our system provides a list of recommended items according to neighbor users who have the biggest total similarity value to the target user. In order to verify and evaluate our proposed method we have performed an experiment on data collected from our Movies Rating System. Prediction accuracy evaluation is conducted to demonstrate how much our algorithm gives the correctness of recommendation to user in terms of MAE. Then, the evaluation of performance is made to show the effectiveness of our method in terms of precision, recall, and F1-measure. Evaluation on coverage is also included in our experiment to see the ability of generating recommendation. The experimental results show that our proposed method outperform and more accurate in suggesting items to users with better performance. The effectiveness of user's behavior in social network particularly shows the significant improvement by up to 6% on recommendation accuracy. Moreover, experiment of recommendation performance shows that incorporating social relationship observed from user's behavior into CF is beneficial and useful to generate recommendation with 7% improvement of performance compared with benchmark methods. Finally, we confirm that interaction between users in social network is able to enhance the accuracy and give better recommendation in conventional approach.
In this paper, a simple game-theoretic entry deterrence model is developed that integrates both limit pricing and predatory pricing. While there have been extensive studies which have dealt with predation and limit pricing separately, no study so far has analyzed these closely related practices in a unified framework. Treating each practice as if it were an independent phenomenon is, of course, an analytical necessity to abstract from complex realities. However, welfare analysis based on such a model may give misleading policy implications. By analyzing limit and predatory pricing within a single framework, this paper attempts to shed some light on the effects of interactions between these two frequently cited tactics of entry deterrence. Another distinctive feature of the paper is that limit and predatory pricing emerge, in equilibrium, as rational, profit maximizing strategies in the model. Until recently, the only conclusion from formal analyses of predatory pricing was that predation is unlikely to take place if every economic agent is assumed to be rational. This conclusion rests upon the argument that predation is costly; that is, it inflicts more losses upon the predator than upon the rival producer, and, therefore, is unlikely to succeed in driving out the rival, who understands that the price cutting, if it ever takes place, must be temporary. Recently several attempts have been made to overcome this modelling difficulty by Kreps and Wilson, Milgram and Roberts, Benoit, Fudenberg and Tirole, and Roberts. With the exception of Roberts, however, these studies, though successful in preserving the rationality of players, still share one serious weakness in that they resort to ad hoc, external constraints in order to generate profit maximizing predation. The present paper uses a highly stylized model of Cournot duopoly and derives the equilibrium predatory strategy without invoking external constraints except the assumption of asymmetrically distributed information. The underlying intuition behind the model can be summarized as follows. Imagine a firm that is considering entry into a monopolist's market but is uncertain about the incumbent firm's cost structure. If the monopolist has low cost, the rival would rather not enter because it would be difficult to compete with an efficient, low-cost firm. If the monopolist has high costs, however, the rival will definitely enter the market because it can make positive profits. In this situation, if the incumbent firm unwittingly produces its monopoly output, the entrant can infer the nature of the monopolist's cost by observing the monopolist's price. Knowing this, the high cost monopolist increases its output level up to what would have been produced by a low cost firm in an effort to conceal its cost condition. This constitutes limit pricing. The same logic applies when there is a rival competitor in the market. Producing a high cost duopoly output is self-revealing and thus to be avoided. Therefore, the firm chooses to produce the low cost duopoly output, consequently inflicting losses to the entrant or rival producer, thus acting in a predatory manner. The policy implications of the analysis are rather mixed. Contrary to the widely accepted hypothesis that predation is, at best, a negative sum game, and thus, a strategy that is unlikely to be played from the outset, this paper concludes that predation can be real occurence by showing that it can arise as an effective profit maximizing strategy. This conclusion alone may imply that the government can play a role in increasing the consumer welfare, say, by banning predation or limit pricing. However, the problem is that it is rather difficult to ascribe any welfare losses to these kinds of entry deterring practices. This difficulty arises from the fact that if the same practices have been adopted by a low cost firm, they could not be called entry-deterring. Moreover, the high cost incumbent in the model is doing exactly what the low cost firm would have done to keep the market to itself. All in all, this paper suggests that a government injunction of limit and predatory pricing should be applied with great care, evaluating each case on its own basis. Hasty generalization may work to the detriment, rather than the enhancement of consumer welfare.
The purpose of this study is to observe and analyze soil moisture conditions with high resolution and to evaluate its application feasibility to agriculture. For this purpose, we used three Landsat-8 OLI (Operational Land Imager)/TIRS (Thermal Infrared Sensor) optical and thermal infrared satellite images taken from May to June 2015, 2016, and 2017, including the rural areas of Jeollabuk-do, where 46% of agricultural areas are located. The soil moisture conditions at each date in the study area can be effectively obtained through the SPI (Standardized Precipitation Index)3 drought index, and each image has near normal, moderately wet, and moderately dry soil moisture conditions. The temperature vegetation dryness index (TVDI) was calculated to observe the soil moisture status from the Landsat-8 OLI/TIRS images with different soil moisture conditions and to compare and analyze the soil moisture conditions obtained from the SPI3 drought index. TVDI is estimated from the relationship between LST (Land Surface Temperature) and NDVI (Normalized Difference Vegetation Index) calculated from Landsat-8 OLI/TIRS satellite images. The maximum/minimum values of LST according to NDVI are extracted from the distribution of pixels in the feature space of LST-NDVI, and the Dry/Wet edges of LST according to NDVI can be determined by linear regression analysis. The TVDI value is obtained by calculating the ratio of the LST value between the two edges. We classified the relative soil moisture conditions from the TVDI values into five stages: very wet, wet, normal, dry, and very dry and compared to the soil moisture conditions obtained from SPI3. Due to the rice-planing season from May to June, 62% of the whole images were classified as wet and very wet due to paddy field areas which are the largest proportions in the image. Also, the pixels classified as normal were analyzed because of the influence of the field area in the image. The TVDI classification results for the whole image roughly corresponded to the SPI3 soil moisture condition, but they did not correspond to the subdivision results which are very dry, wet, and very wet. In addition, after extracting and classifying agricultural areas of paddy field and field, the paddy field area did not correspond to the SPI3 drought index in the very dry, normal and very wet classification results, and the field area did not correspond to the SPI3 drought index in the normal classification. This is considered to be a problem in Dry/Wet edge estimation due to outlier such as extremely dry bare soil and very wet paddy field area, water, cloud and mountain topography effects (shadow). However, in the agricultural area, especially the field area, in May to June, it was possible to effectively observe the soil moisture conditions as a subdivision. It is expected that the application of this method will be possible by observing the temporal and spatial changes of the soil moisture status in the agricultural area using the optical satellite with high spatial resolution and forecasting the agricultural production.
As the era of space technology utilization is approaching, the launch of CAS (Compact Advanced Satellite) 500-1/2 satellites is scheduled during 2021 for acquisition of high-resolution images. Accordingly, the increase of image usability and processing efficiency has been emphasized as key design concepts of the CAS 500-1/2 ground station. In this regard, "CAS 500-1/2 Image Acquisition and Utilization Technology Development" project has been carried out to develop core technologies and processing systems for CAS 500-1/2 data collecting, processing, managing and distributing. In this paper, we introduce the results of the above project. We developed an operation system to generate precision images automatically with GCP (Ground Control Point) chip DB (Database) and DEM (Digital Elevation Model) DB over the entire Korean peninsula. We also developed the system to produce ortho-rectified images indexed to 1:5,000 map grids, and hence set a foundation for ARD (Analysis Ready Data)system. In addition, we linked various application software to the operation system and systematically produce mosaic images, DSM (Digital Surface Model)/DTM (Digital Terrain Model), spatial feature thematic map, and change detection thematic map. The major contribution of the developed system and technologies includes that precision images are to be automatically generated using GCP chip DB for the first time in Korea and the various utilization product technologies incorporated into the operation system of a satellite ground station. The developed operation system has been installed on Korea Land Observation Satellite Information Center of the NGII (National Geographic Information Institute). We expect the system to contribute greatly to the center's work and provide a standard for future ground station systems of earth observation satellites.
Due to the development of digital technology, studies regarding smart wear integrating daily life have rapidly increased. However, consumer research about perception and attitude toward smart clothing hardly could find. The purpose of this study was to identify innovative characteristics and perceived risk of smart clothing and to analyze the influences of theses factors on product attitudes and intention to adopt. Specifically, five hypotheses were established. H1: Perceived attributes of smart clothing except for complexity would have positive relations to product attitude or purchase intention, while complexity would be opposite. H2: Product attitude would have positive relation to purchase intention. H3: Product attitude would have a mediating effect between perceived attributes and purchase intention. H4: Perceived risks of smart clothing would have negative relations to perceived attributes except for complexity, and positive relations to complexity. H5: Product attitude would have a mediating effect between perceived risks and purchase intention. A self-administered questionnaire was developed based on previous studies. After pretest, the data were collected during September, 2006, from university students in Korea who were relatively sensitive to innovative products. A total of 300 final useful questionnaire were analyzed by SPSS 13.0 program. About 60.3% were male with the mean age of 21.3 years old. About 59.3% reported that they were aware of smart clothing, but only 9 respondents purchased it. The mean of attitudes toward smart clothing and purchase intention was 2.96 (SD=.56) and 2.63 (SD=.65) respectively. Factor analysis using principal components with varimax rotation was conducted to identify perceived attribute and perceived risk dimensions. Perceived attributes of smart wear were categorized into relative advantage (including compatibility), observability (including triability), and complexity. Perceived risks were identified into physical/performance risk, social psychological risk, time loss risk, and economic risk. Regression analysis was conducted to test five hypotheses. Relative advantage and observability were significant predictors of product attitude (adj
Recently, channels like social media and SNS create enormous amount of data. In all kinds of data, portions of unstructured data which represented as text data has increased geometrically. But there are some difficulties to check all text data, so it is important to access those data rapidly and grasp key points of text. Due to needs of efficient understanding, many studies about text summarization for handling and using tremendous amounts of text data have been proposed. Especially, a lot of summarization methods using machine learning and artificial intelligence algorithms have been proposed lately to generate summary objectively and effectively which called "automatic summarization". However almost text summarization methods proposed up to date construct summary focused on frequency of contents in original documents. Those summaries have a limitation for contain small-weight subjects that mentioned less in original text. If summaries include contents with only major subject, bias occurs and it causes loss of information so that it is hard to ascertain every subject documents have. To avoid those bias, it is possible to summarize in point of balance between topics document have so all subject in document can be ascertained, but still unbalance of distribution between those subjects remains. To retain balance of subjects in summary, it is necessary to consider proportion of every subject documents originally have and also allocate the portion of subjects equally so that even sentences of minor subjects can be included in summary sufficiently. In this study, we propose "subject-balanced" text summarization method that procure balance between all subjects and minimize omission of low-frequency subjects. For subject-balanced summary, we use two concept of summary evaluation metrics "completeness" and "succinctness". Completeness is the feature that summary should include contents of original documents fully and succinctness means summary has minimum duplication with contents in itself. Proposed method has 3-phases for summarization. First phase is constructing subject term dictionaries. Topic modeling is used for calculating topic-term weight which indicates degrees that each terms are related to each topic. From derived weight, it is possible to figure out highly related terms for every topic and subjects of documents can be found from various topic composed similar meaning terms. And then, few terms are selected which represent subject well. In this method, it is called "seed terms". However, those terms are too small to explain each subject enough, so sufficient similar terms with seed terms are needed for well-constructed subject dictionary. Word2Vec is used for word expansion, finds similar terms with seed terms. Word vectors are created after Word2Vec modeling, and from those vectors, similarity between all terms can be derived by using cosine-similarity. Higher cosine similarity between two terms calculated, higher relationship between two terms defined. So terms that have high similarity values with seed terms for each subjects are selected and filtering those expanded terms subject dictionary is finally constructed. Next phase is allocating subjects to every sentences which original documents have. To grasp contents of all sentences first, frequency analysis is conducted with specific terms that subject dictionaries compose. TF-IDF weight of each subjects are calculated after frequency analysis, and it is possible to figure out how much sentences are explaining about each subjects. However, TF-IDF weight has limitation that the weight can be increased infinitely, so by normalizing TF-IDF weights for every subject sentences have, all values are changed to 0 to 1 values. Then allocating subject for every sentences with maximum TF-IDF weight between all subjects, sentence group are constructed for each subjects finally. Last phase is summary generation parts. Sen2Vec is used to figure out similarity between subject-sentences, and similarity matrix can be formed. By repetitive sentences selecting, it is possible to generate summary that include contents of original documents fully and minimize duplication in summary itself. For evaluation of proposed method, 50,000 reviews of TripAdvisor are used for constructing subject dictionaries and 23,087 reviews are used for generating summary. Also comparison between proposed method summary and frequency-based summary is performed and as a result, it is verified that summary from proposed method can retain balance of all subject more which documents originally have.
Recently, e-sports are growing with potentiality as a new industry with conspicuous profit model. But studies that dealing with e-sports are not enough. Hence, proposes of this paper are both to establish basic model that is for the design of e-sport marketing strategy and to contribute toward future studies which are related to e-sports. Recently, the researches to explain sports-sponsorship through the identification theory have been discovered. Many researches say that somewhat proper identification is a requirement for most sponsors to improve the their images which is essential to sponsorship activity. Consequently, the research for sponsorship associated with identification in the e-sports, not in the physical sports is the core sector of this study. We extracted the variables from online's major characteristics and existing sport sponsorship researches. First, because e-sports mean the tournaments or leagues in the use of online game, the main event of the game is likely to call it online game. Online media's attributes are distinguished from those of offline. Especially, interactivity, anonymity, and expandibility as a e-sport game attributes are able to be mentioned. So, these inherent online attributes are examined on the relationship with flow. Second, in physical sports games, Fisher(1998) revealed that team similarity and team attractivity were positively related to team identification. Wann(1996) said that the result of former game influenced the evaluation of the next game, then in turn has an effect on the identification of team supporters. Considering these results in the e-sports side, e-sports gamer' attractivity, similarity, and match result seem to be important precedent variables of the identification with a gamer. So, these e-sport gamer attributes are examined on the relationship with both flow and identification with a gamer. Csikszentmihalyi(1988) defined the term flow as feeling status for him to be making current positive experience optimally. Hoffman and Novak(1996) also said that if a user experienced the flow he would visit a website without any reward. Therefore flow might be positively associated with user's identification with a gamer. And, Swanson(2003) disclosed that team identification influenced the positive results of sponsorship, which included attitude toward sponsors, sponsor patronage, and satisfaction with sponsors. That is, identification with a gamer expect to be connected with corporation identification significantly. According to the above, we can design the following research model. All variables used in this study(interactivity, anonymity, expandibility, attractivity, similarity, match result, flow, identification with a gamer, and identification with a sponsor) definitely were defined operationally underlying precedent researches. Sample collection was carried out to the person who has an experience to have enjoyed e-sports during June 2006. Much portion of samples is men because much more men than women enjoy e-sports in general. Two-step approach was used to test the hypotheses. First, confirmatory factor analysis was committed to guarantee the validity and reliability of variables. The results showed that all variables had not only intensive and discriminant validity, but also reliability. Then, research model was examined with fully structural equation using LISREL 8.3 version. The fitness of the suggested model mostly was at the acceptable level. Shortly speaking about the results, first of all, in e-sports game attributes, only interactivity which is called a basic feature in online situation affected flow positively. Secondly, in e-sports gamer's attributes, similarity with a gamer and match result influenced flow positively, but there was no significant effect in the relationship between the attractivity of a gamer and flow. And as expected, similarity had an effect on identification with a gamer significantly. But unexpectedly attractivity and match result did not influence identification with a gamer significantly. Just the same as the fact verified in the many precedent researches, flow greatly influenced identification with a gamer, and identification with a gamer continually had an influence on the identification with a sponsor significantly. There are some implications in these results. If the sponsor of e-sports supports the pro-game player who absolutely should have the superior ability to others and is similar to the user enjoying e-sports, many amateur gamers will feel much of the flow and identification with a pro-gamer, and then after all, feel the identification with a sponsor. Such identification with a sponsor leads people enjoying e-sports to have purchasing intention for products produced by the sponsor and to make a positive word-of-mouth for those products or the sponsor. For the future studies, we recommend a few ideas. Based on the results of this study, it is necessary to find new variables relating to the e-sports, which is not mentioned in this study. For this work to be possible, qualitative research seems to be needed to consider the inherent e-sport attributes. Finally, to generalize the results related to e-sports, a wide range of generations not a specific generation should be researched.
Object : Cigarette smoking is a major cause of mucus hypersecretion, which is a pathophysiological feature of many inflammatory airway diseases. Mucins, which are an important part of the airway mucus, are synthesized from the Muc gene in airway epithelial cells. However, the signaling pathways for cigarette smoke-induced mucin synthesis are unknown. The aim of this study was to determine the signal pathway for smoking induced Muc5ac gene expression. Methods : A549 cells were cultured and transiently transfected with the Muc5ac promoter fragment. These cells were stimulated with 5% cigarette smoke extract (CSE) alone or with CSE after a pretreatment with various signal transduction pathway inhibitors (AG1478, PD98059 and SB203580). The Muc5ac promoter activity was examined using the luciferase reporter system, and the level of phosphorylated EGFR, ERK1/2, p38 MAPK and JNK were all examined using Western blot analysis. Muc5ac mRNA expression was also examined using reverse transcriptase polymerase chain reactions (RT-PCR). Results : 1. The peak level of luciferase activity of the Muc5ac promoter was observed at 5% concentration and after 3 hours of incubation with the CSE. The level of EGFR phosphorylation and the luciferase activity of the transfected cells caused by the CSE were significantly suppressed by AG1478 or PD98059 (P<0.01). 2. CSE phosphorylated ERK1/2 or p38 MAPK but not JNK. The Muc5ac mRNA expression level was increased by the CSE but that was suppressed by PD98059 or AG1478. 3. The CSE-induced phosphorylation of ERK1/2 was blocked by PD98059 and that of p38 MAPK was blocked by either PD98059 or SB203580. Either PD98059 or SB203580 suppressed the luciferase activity of the transfected cells (P<0.0001). Conclusion : The Muc5ac mRNA expression level was increased by the CSE. The increased CSE-induced transcriptional activity was mediated via EGF receptor activation, which led to ERK1/2 and p38 MAPK phosphorylation.
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70