• Title/Summary/Keyword: Feature Analysis

Search Result 4,092, Processing Time 0.03 seconds

Development of Emotional Feature Extraction Method based on Advanced AAM (Advanced AAM 기반 정서특징 검출 기법 개발)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.834-839
    • /
    • 2009
  • It is a key element that the problem of emotional feature extraction based on facial image to recognize a human emotion status. In this paper, we propose an Advanced AAM that is improved version of proposed Facial Expression Recognition Systems based on Bayesian Network by using FACS and AAM. This is a study about the most efficient method of optimal facial feature area for human emotion recognition about random user based on generalized HCI system environments. In order to perform such processes, we use a Statistical Shape Analysis at the normalized input image by using Advanced AAM and FACS as a facial expression and emotion status analysis program. And we study about the automatical emotional feature extraction about random user.

A Study on Feature Projection Methods for a Real-Time EMG Pattern Recognition (실시간 근전도 패턴인식을 위한 특징투영 기법에 관한 연구)

  • Chu, Jun-Uk;Kim, Shin-Ki;Mun, Mu-Seong;Moon, In-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.935-944
    • /
    • 2006
  • EMG pattern recognition is essential for the control of a multifunction myoelectric hand. The main goal of this study is to develop an efficient feature projection method for EMC pattern recognition. To this end, we propose a linear supervised feature projection that utilizes linear discriminant analysis (LDA). We first perform wavelet packet transform (WPT) to extract the feature vector from four channel EMC signals. For dimensionality reduction and clustering of the WPT features, the LDA incorporates class information into the learning procedure, and finds a linear matrix to maximize the class separability for the projected features. Finally, the multilayer perceptron classifies the LDA-reduced features into nine hand motions. To evaluate the performance of LDA for the WPT features, we compare LDA with three other feature projection methods. From a visualization and quantitative comparison, we show that LDA has better performance for the class separability, and the LDA-projected features improve the classification accuracy with a short processing time. We implemented a real-time pattern recognition system for a multifunction myoelectric hand. In experiment, we show that the proposed method achieves 97.2% recognition accuracy, and that all processes, including the generation of control commands for myoelectric hand, are completed within 97 msec. These results confirm that our method is applicable to real-time EMG pattern recognition far myoelectric hand control.

Relevancy contemplation in medical data analytics and ranking of feature selection algorithms

  • P. Antony Seba;J. V. Bibal Benifa
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.448-461
    • /
    • 2023
  • This article performs a detailed data scrutiny on a chronic kidney disease (CKD) dataset to select efficient instances and relevant features. Data relevancy is investigated using feature extraction, hybrid outlier detection, and handling of missing values. Data instances that do not influence the target are removed using data envelopment analysis to enable reduction of rows. Column reduction is achieved by ranking the attributes through feature selection methodologies, namely, extra-trees classifier, recursive feature elimination, chi-squared test, analysis of variance, and mutual information. These methodologies are ranked via Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) using weight optimization to identify the optimal features for model building from the CKD dataset to facilitate better prediction while diagnosing the severity of the disease. An efficient hybrid ensemble and novel similarity-based classifiers are built using the pruned dataset, and the results are thereafter compared with random forest, AdaBoost, naive Bayes, k-nearest neighbors, and support vector machines. The hybrid ensemble classifier yields a better prediction accuracy of 98.31% for the features selected by extra tree classifier (ETC), which is ranked as the best by TOPSIS.

Seabed Sediment Feature Extraction Algorithm using Attenuation Coefficient Variation According to Frequency (주파수에 따른 감쇠계수 변화량을 이용한 해저 퇴적물 특징 추출 알고리즘)

  • Lee, Kibae;Kim, Juho;Lee, Chong Hyun;Bae, Jinho;Lee, Jaeil;Cho, Jung Hong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.111-120
    • /
    • 2017
  • In this paper, we propose novel feature extraction algorithm for classification of seabed sediment. In previous researches, acoustic reflection coefficient has been used to classify seabed sediments, which is constant in terms of frequency. However, attenuation of seabed sediment is a function of frequency and is highly influenced by sediment types in general. Hence, we developed a feature vector by using attenuation variation with respect to frequency. The attenuation variation is obtained by using reflected signal from the second sediment layer, which is generated by broadband chirp. The proposed feature vector has advantage in number of dimensions to classify the seabed sediment over the classical scalar feature (reflection coefficient). To compare the proposed feature with the classical scalar feature, dimension of proposed feature vector is reduced by using linear discriminant analysis (LDA). Synthesised acoustic amplitudes reflected by seabed sediments are generated by using Biot model and the performance of proposed feature is evaluated by using Fisher scoring and classification accuracy computed by maximum likelihood decision (MLD). As a result, the proposed feature shows higher discrimination performance and more robustness against measurement errors than that of classical feature.

Local Feature Learning using Deep Canonical Correlation Analysis for Heterogeneous Face Recognition (이질적 얼굴인식을 위한 심층 정준상관분석을 이용한 지역적 얼굴 특징 학습 방법)

  • Choi, Yeoreum;Kim, Hyung-Il;Ro, Yong Man
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.848-855
    • /
    • 2016
  • Face recognition has received a great deal of attention for the wide range of applications in real-world scenario. In this scenario, mismatches (so called heterogeneity) in terms of resolution and illumination between gallery and test face images are inevitable due to the different capturing conditions. In order to deal with the mismatch problem, we propose a local feature learning method using deep canonical correlation analysis (DCCA) for heterogeneous face recognition. By the DCCA, we can effectively reduce the mismatch between the gallery and the test face images. Furthermore, the proposed local feature learned by the DCCA is able to enhance the discriminative power by using facial local structure information. Through the experiments on two different scenarios (i.e., matching near-infrared to visible face images and matching low-resolution to high-resolution face images), we could validate the effectiveness of the proposed method in terms of recognition accuracy using publicly available databases.

Chaoticity Evaluation of Ultrasonic Signals in Welding Defects by 6dB Drop Method (6dB Drop법에 의한 용접 결함 초음파 신호의 카오스성 평가)

  • Yi, Won;Yun, In-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1065-1074
    • /
    • 1999
  • This study proposes the analysis and evaluation method of time series ultrasonic signal using the chaotic feature extraction for ultrasonic pattern recognition. Features extracted from time series data using the chaotic time series signal analysis quantitatively welding defects. For this purpose analysis objective in this study is fractal dimension and Lyapunov exponent. Trajectory changes in the strange attractor indicated that even same type of defects carried substantial difference in chaoticity resulting from distance shills such as 0.5 and 1.0 skip distance. Such differences in chaoticity enables the evaluation of unique features of defects in the weld zone. In experiment fractal(correlation) dimension and Lyapunov exponent extracted from 6dB ultrasonic defect signals of weld zone showed chaoticity. In quantitative chaotic feature extraction, feature values(mean values) of 4.2690 and 0.0907 in the case of porosity and 4.2432 and 0.0888 in the case of incomplete penetration were proposed on the basis of fractal dimension and Lyapunov exponent. Proposed chaotic feature extraction in this study enhances ultrasonic pattern recognition results from defect signals of weld zone such as vertical hole.

The Influence of Service Quality, Product Quality, Price on Store Patronage for Apparel Stores (의류점포의 서비스품질, 제품품질과 가격이 점포애고에 미치는 영향)

  • 김지연;이은영
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.1
    • /
    • pp.12-21
    • /
    • 2004
  • The purposes of this research were (1) to identify service quality and apparel quality in apparel stores, (2) to examine the influence of service quality, product quality and price on customer satisfaction, (3) to examine the influence of service quality, product quality, price and customer satisfaction on repurchase intention that is important feature of store patronage. The data was collected from 435 female students, career women, and house wives using questionnaire and analyzed by frequency analysis, factor analysis, reliability analysis and regression. The results of this research were as follows: (1) Service quality in apparel stores was divided into six factors: facilities and policy/ salesperson VMD/ after service/ impression and atmosphere/ promotion. (2) Product quality was divided into four factors: objective feature/ expressive feature/ wearing sensation/ fitness. (3) Service quality, product quality, price influenced customer satisfaction. (4) Product quality, price and customer satisfaction influenced repurchase intention directly, but service quality influenced repurchase intention indirectly. (5) Service quality factors that influenced customer to have repurchase intention were facilities and policy, salesperson, and VMD. (6) Product quality factors that influenced customer to have repurchase intention were objective feature and wearing sensation.

A Feature Analysis of Industrial Accidents Using C4.5 Algorithm (C4.5 알고리즘을 이용한 산업 재해의 특성 분석)

  • Leem, Young-Moon;Kwag, Jun-Koo;Hwang, Young-Seob
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.4 s.72
    • /
    • pp.130-137
    • /
    • 2005
  • Decision tree algorithm is one of the data mining techniques, which conducts grouping or prediction into several sub-groups from interested groups. This technique can analyze a feature of type on groups and can be used to detect differences in the type of industrial accidents. This paper uses C4.5 algorithm for the feature analysis. The data set consists of 24,887 features through data selection from total data of 25,159 taken from 2 year observation of industrial accidents in Korea For the purpose of this paper, one target value and eight independent variables are detailed by type of industrial accidents. There are 222 total tree nodes and 151 leaf nodes after grouping. This paper Provides an acceptable level of accuracy(%) and error rate(%) in order to measure tree accuracy about created trees. The objective of this paper is to analyze the efficiency of the C4.5 algorithm to classify types of industrial accidents data and thereby identify potential weak points in disaster risk grouping.

Microscopic Image-based Cancer Cell Viability-related Phenotype Extraction (현미경 영상 기반 암세포 생존력 관련 표현형 추출)

  • Misun Kang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.176-181
    • /
    • 2023
  • During cancer treatment, the patient's response to drugs appears differently at the cellular level. In this paper, an image-based cell phenotypic feature quantification and key feature selection method are presented to predict the response of patient-derived cancer cells to a specific drug. In order to analyze the viability characteristics of cancer cells, high-definition microscope images in which cell nuclei are fluorescently stained are used, and individual-level cell analysis is performed. To this end, first, image stitching is performed for analysis of the same environment in units of the well plates, and uneven brightness due to the effects of illumination is adjusted based on the histogram. In order to automatically segment only the cell nucleus region, which is the region of interest, from the improved image, a superpixel-based segmentation technique is applied using the fluorescence expression level and morphological information. After extracting 242 types of features from the image through the segmented cell region information, only the features related to cell viability are selected through the ReliefF algorithm. The proposed method can be applied to cell image-based phenotypic screening to determine a patient's response to a drug.

The effect of housing type on the perception of the quality of housing environement and housing satisfaction (주택유형이 주거환경의 질인지와 주거만족도에 미치는 영향)

  • 김미희
    • Journal of the Korean Home Economics Association
    • /
    • v.23 no.2
    • /
    • pp.55-66
    • /
    • 1985
  • This study is intended to compare the quality of housing envirionments between single family house and apartments. To be specific, firstly, it is to be examined as to whether there exists any differences between residents of single family house and those of highrise apartments in terms of their perception of the quality of housing environment. Secondly, the major factors of the perception of the quality of housing environment may be linked to the level of housing satisfaction are to be explored in this study. The perception of the quality housing environment is composed of four factors such as living space, noise, neighbor environment, and structural feature. For the purpose, questionnaires were adinistered to 125 home makers living in single family house and 125 home makers in high-rise apartments in Kwangju. The data were analyzed with factor analysis, analysis of variance, and multiple regression analysis.The following conclusions are derived from the data analysis in thi study: 1) Resjdents of apartments tended to be more satisfied with structural feature of housing unit and less satisfied with noise than those of single family house. There are negligible differences between two housing types in perception of the quality of living space, and neighbor environment. 2) According to the singhle family house group, it is found that structural feature, neighbor environment, and living space predict most of the variance in the level of housing unit satisfaction. It is also turned out that neighbor environment, noise, and structural feature have impact on the level of neighborhood statisfaction. 3) the apartments group shows that structural feature is the only predictor having impact on housing unit satisfaction. It is found that neighbor environment factor predicted the level of neighborhood satisfaction.

  • PDF