• Title/Summary/Keyword: Feasible Launch Time

Search Result 4, Processing Time 0.02 seconds

Analysis on Time Performance of Intercept System for Engagement Plan of Missile Defense System (미사일방어체계의 교전계획 수립을 위한 요격체계의 시간성능인자 분석)

  • Hong, Seong-Wan;Song, Jin-Young;Chang, Young-Keun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.93-105
    • /
    • 2019
  • In order to establish an effective engagement plan of the missile defense system, both spatial and temporal performance analysis of the intercept system should be performed. However, research on existing missile defense systems has been mainly focused on spatial performance. In this study, time performance factors are defined through the composition and operational concept of missile defense system, and the target ballistic missile interception process is presented as integrated timeline through ballistic missile model and radar model. We also proposed an algorithm for deriving time performance. Simulation results confirm that the time performance factors can be used in the engagement planning for multi-engagement through the example of engagement planning.

Polynomial-time Greedy Algorithm for Anti-Air Missiles Assignment Problem (지대공 미사일 배정 문제의 다항시간 탐욕 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.185-191
    • /
    • 2019
  • During the modern battlefields of multi-batches flight formation attack situation, it is an essential task for a commander to make a proper fire distribution of air defense missile launch platforms for threat targets with effectively and quickly. Pan et al. try to solve this problem using genetic algorithm, but they are fails. This paper gets the initial feasible solution using high threat target first destroying strategy only use 75% available fire of each missile launch platform. Then, the assigned missile is moving to another target in the case of decreasing total threat. As a result of experiment, while the proposed algorithm is polynomial-time complexity greedy algorithm but this can be improve the solution than genetic algorithm.

Policy for planned placement of sensor nodes in large scale wireless sensor network

  • Sharma, Vikrant;Patel, R.B;Bhadauria, HS;Prasad, D
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.3213-3230
    • /
    • 2016
  • Sensor node (SN) is a crucial part in any remote monitoring system. It is a device designed to monitor the particular changes taking place in its environs. Wireless sensor network (WSN) is a system formed by the set of wirelessly connected SNs placed at different geographical locations within a target region. Precise placement of SNs is appreciated, as it affects the efficiency and effectiveness of any WSN. The manual placement of SNs is only feasible for small scale regions. The task of SN placement becomes tedious, when the size of a target region is extremely large and manually unreachable. In this research article, an automated mechanism for fast and precise deployment of SNs in a large scale target region has been proposed. It uses an assembly of rotating cannons to launch the SNs from a moving carrier helicopter. The entire system is synchronized such that the launched SNs accurately land on the pre-computed desired locations (DLs). Simulation results show that the proposed model offers a simple, time efficient and effective technique to place SNs in a large scale target region.

Early Phase Contingency Trajectory Design for the Failure of the First Lunar Orbit Insertion Maneuver: Direct Recovery Options

  • Song, Young-Joo;Bae, Jonghee;Kim, Young-Rok;Kim, Bang-Yeop
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.331-342
    • /
    • 2017
  • To ensure the successful launch of the Korea pathfinder lunar orbiter (KPLO) mission, the Korea Aerospace Research Institute (KARI) is now performing extensive trajectory design and analysis studies. From the trajectory design perspective, it is crucial to prepare contingency trajectory options for the failure of the first lunar brake or the failure of the first lunar orbit insertion (LOI) maneuver. As part of the early phase trajectory design and analysis activities, the required time of flight (TOF) and associated delta-V magnitudes for each recovery maneuver (RM) to recover the KPLO mission trajectory are analyzed. There are two typical trajectory recovery options, direct recovery and low energy recovery. The current work is focused on the direct recovery option. Results indicate that a quicker execution of the first RM after the failure of the first LOI plays a significant role in saving the magnitudes of the RMs. Under the conditions of the extremely tight delta-V budget that is currently allocated for the KPLO mission, it is found that the recovery of the KPLO without altering the originally planned mission orbit (a 100 km circular orbit) cannot be achieved via direct recovery options. However, feasible recovery options are suggested within the boundaries of the currently planned delta-V budget. By changing the shape and orientation of the recovered final mission orbit, it is expected that the KPLO mission may partially pursue its scientific mission after successful recovery, though it will be limited.