• Title/Summary/Keyword: FeNb thin film

Search Result 17, Processing Time 0.023 seconds

A study on the fabrication of $Pb(Fe^{0.5},Nb^{0.5}O_3$ thin films by a Co-sputtering technique and their characteristics properties (동시 스퍼터링법에 의한$Pb(Fe^{0.5},Nb^{0.5}O_3$박막의 제조 및 특성 평가에 대한 연구)

  • 이상욱;신동석;최인훈
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.1
    • /
    • pp.17-23
    • /
    • 1998
  • $Pb(Fe_{0.5}Nb_{0.5}O_3(PFN)$ thin films were prepared by rf magnetron co-sputtering method on $SiO_2/Si$, ITO/glass, and $Pt/Ti/SiO_2/Si$ substrates and post-annealed at the $N_2$ atmosphere by RTA(rapid thermal annerling). The degree of crystallinity of PFN films was identified on various substrates. Electrical properties of PFN films was characterized for $Pt/PFN/Pt/Ti/SiO_2/Si$ structure. The composition of PFN films was estimated by EPMA (electron probe micro analysis). PFN films would be crystallized better to perovskite phase on ITO/glass substrate than $SiO_2/Si$ substrate. This may be induced by the deformation of Pb deficient pyrochlore phase due to Pb diffusion into $SiO_2/Si$ substrate. PFN films on $Pt/Ti/SiO_2/Si$ substrate. PFN films with 5-10% Pb excess were crystallized to perovskite phase from $500^{\circ}C$ temperature. In summary, we show that Pb composition and annealing temperature were critically influenced on crystallinity to perovskite phase. When PFN film with 17% Pb excess was annealed at $600^{\circ}C$ at the $N_2$ atmosphere for 300kV/cm and 88. Its remnant polarization coercive field $2.0 MC/cm^2$ and 144kV/cm, respectively.

  • PDF

SBN Thin films Prepared by Ion Beam Sputtering method (이온빔 스퍼터링법으로 제조된 SBN 박막의 특성)

  • Lee, Dong-Gun;Jang, Jae-Hoon;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1144-1147
    • /
    • 2002
  • Ferroelectric $Sr_xBa_{1-x}Nb_2O_6(0.25{\leq}x{\leq}0.75)$ thin films were prepared by the Ion Beam Sputtering method. Deposit onto Pt/Ti/$SiO_2$/Si(100) substrates. The deposited thin films were heat-treated for crystallization. Microstructure and crystallization behavior were examined using FE-SEM, XRD. Ferroelectric hysteresis were measured. The measured remanent polarization and coercive field values were $38{\mu}C/cm^2$ and 120kV/cm, respectively.

  • PDF

Preparation of Nano Titania Sols and Thin Films added with Transition Metal Elements (전이금속원소들이 첨가된 나노 티타니아 졸 및 코팅막 제조)

  • Lee K.;Lee N. H.;Shin S. H.;Lee H. G.;Kim S. J.
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.634-641
    • /
    • 2004
  • The photocatalytic performance of $TiO_2$ thin films coated on porous alumina balls using various aqueous $TiOCl_2$ solutions as starting precursors, to which 1.0 $mol\%$ transition metal ($Ni^{2+},\;Cr^{3+},\;Fe^{3+},\;Nb^{3+},\;and\;V^{5+}$) chlorides had been already added, has been investigated, together with characterizations for $TiO_2$ sols synthesized simultaneously in the same autoclave through hydrothermal method. The synthesized $TiO_2$ sols were all formed with an anatase phase, and their particle size was between several nm and 30 nm showing ${\zeta}-potential$ of $-25{\sim}-35$ mV, being maintained stable for over 6 months. However, the $TiO_2$ sol added with Cr had a much lower value of -potential and larger particle sizes. The coated $TiO_2$ thin films had almost the same shape and size as those of the sol. The pure $TiO_2$ sol showed the highest optical absorption in the ultraviolet light region, and other $TiO_2$ sols containing $Cr^{3+},\;Fe^{3+}\;and\;Ni^{2+}$ showed higher optical absorption than pure sol in the visible light region. According to the experiments for removal of a gas-phase benzene, the pure $TiO_2$ film showed the highest photo dissociation rate in the ultraviolet light region, but in artificial sunlight the photo dissociation rate of $TiO_2$ coated films containing $Cr^{3+},\;Fe^{3+}\;and\;Ni^{2+}$ was measured higher together with the increase of optical absorption by doping.

Microwave Dielectric Properties of Low Temperature Fired (${Pb_{0.45}}{Ca_{0.55}}$) [(${Fe _{0.5}}{Nb_{0.5}}$)$_{0.9}{Sn_{0.1}}$]$O_3$Ceramics with Various Additives

  • Ha, Jong-Yoon;Park, Ji-Won;Yoon, Seok-Jin;Kim, Hyun-Jai;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.7
    • /
    • pp.597-601
    • /
    • 2001
  • The effect of CuO, $B_2$ $O_3$, $V_2$ $O_{5}$ and CuO-B $i_2$ $O_3$additives on microwave dielectric properties of (P $b_{0.45}$C $a_{0.55}$) [(F $e_{0.5}$N $b_{0.5}$)$_{0.9}$S $n_{0.1}$] $O_3$(PCFNS) were investigated. The PCFNS ceramics were sintered at 11$65^{\circ}C$. To decrease the sintering temperature for using as a low-temperature co-firing ceramics (LTCC), CuO, $B_2$ $O_3$, $V_2$ $O_{5}$ and CuO-B $i_2$ $O_3$were added to the PCFNS. As the content of CuO increased, the sintered density and dielectric constant increased and the temperature coefficient of resonance frequency ($\tau$$_{f}$) shifted to the positive value. When the CuO-B $i_2$ $O_3$were added, dielectric properties were $\varepsilon$$_{r}$ of 83, Q. $f_{0}$ of 6085 GHz, and $\tau$$_{f}$ of 8ppm/$^{\circ}C$ at a sintering temperature of 100$0^{\circ}C$. The relationship between the microstructure and properties of ceramics was studied by X-ray diffraction and scanning electron microscopy.icroscopy.y.icroscopy.y.

  • PDF

BiFeO3-based Lead-free Piezoelectric Ceramics (비스무스 페라이트계 무연 압전 세라믹스)

  • Choi, Jin-Hong;Kim, Hyun-Ah;Han, Seung-Ho;Kang, Hyung-Won;Lee, Hyeung-Gyu;Kim, Jeong-Seog;Cheon, Chae-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.9
    • /
    • pp.692-701
    • /
    • 2012
  • Recently, many lead-free piezoelectric materials have been investigated for the replacement of existing Pb-based piezoelectric ceramics because of globally increasing environmental interest. There has been remarkable improvement in piezoelectric properties of some lead-free ceramics such as $(Bi,Na)TiO_3-(Bi,K)TiO_3-BaTiO_3$, $(Na,K)NbO_3-LiSbO_3$, and so on. However, no one still has comparable piezoelectric properties to lead-based materials. Therefore, new lead-free piezoelectric ceramics are required. $BiFeO_3$ has a rhombohedrally distorted perovskite structure at room temperature and a very high Curie temperature ($T_C$= 1,100 K). And a very large electric polarization of 50 ~ 60 ${\mu}C/cm^2$ has been reported both in epitaxial thin film and single crystal $BiFeO_3$. Therefore, a high piezoelectric effect is expected also in a $BiFeO_3$ ceramics. The recent research activities on $BiFeO_3$ or $BiFeO_3$-based solid solutions are reviewed in this article.

A Review of Epitaxial Metal-Nitride Films by Polymer-Assisted Deposition

  • Luo, Hongmei;Wang, Haiyan;Zou, Guifu;Bauer, Eve;Mccleskey, Thomas M.;Burrell, Anthony K.;Jia, Quanxi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.2
    • /
    • pp.54-60
    • /
    • 2010
  • Polymer-assisted deposition is a chemical solution route to high quality thin films. In this process, the polymer controls the viscosity and binds metal ions, resulting in a homogeneous distribution of metal precursors in the solution and the formation of crack-free and uniform films after thermal treatment. We review our recent effort to epitaxially grow metal-nitride thin films, such as hexagonal GaN, cubic TiN, AlN, NbN, and VN, mixed-nitride $Ti_{1-x}Al_xN$, ternary nitrides tetragonal $SrTiN_2$, $BaZrN_2$, and $BaHfN_2$, hexagonal $FeMoN_2$, and nanocomposite TiN-$BaZrN_2$.

Electrochemical treatment of wastewater using boron doped diamond electrode by metal inter layer

  • KIM, Seohan;YOU, Miyoung;SONG, Pungkeun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.251-251
    • /
    • 2016
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. Wastewaters are consisting of complex mixture of different inorganic and organic compounds and some of them can be toxic, hazardous and hard to degrade. These effluents are mainly treated by conventional technologies such are aerobic and anaerobic treatment and chemical coagulation. But, these processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that could be show higher purification results. Among them, boron doped diamond (BDD) attract attention as electrochemical electrode due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD on Nb, Ta, W and Si substrates, but, their application in effluents treatment is not suitable due to high cost of metal and low conductivity of Si. To solve these problems, Ti has been candidate as substrate in consideration of cost and property. But there are adhesion issues that must be overcome to apply Ti as BDD substrate. Al, Cu, Ti and Nb thin films were deposited on Ti substrate to improve adhesion between substrate and BDD thin film. In this paper, BDD films were deposited by hot filament chemical vapor deposition (HF-CVD) method. Prior to deposition, cleaning processes were conducted in acetone, ethanol, and isopropyl alcohol (IPA) using sonification machine for 7 min, respectively. And metal layer with the thickness of 200 nm were deposited by DC magnetron sputtering (DCMS). To analyze microstructure X-ray diffraction (XRD, Bruker gads) and field emission scanning electron microscopy (FE-SEM, Hitachi) were used. It is confirmed that metal layer was effective to adhesion property and improved electrode property. Electrochemical measurements were carried out in a three electrode electrochemical cell containing a 0.5 % H2SO4 in deionized water. As a result, it is confirmed that metal inter layer heavily effect on BDD property by improving adhesion property due to suppressing formation of titanium carbide.

  • PDF