Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.9.692

BiFeO3-based Lead-free Piezoelectric Ceramics  

Choi, Jin-Hong (Department of Semiconductor & Display Engineering, Hoseo University)
Kim, Hyun-Ah (Department of Materials Science & Engineering, Hoseo University)
Han, Seung-Ho (Electronic Materials and Device Research Center, Korea Electronics Technology Institute)
Kang, Hyung-Won (Electronic Materials and Device Research Center, Korea Electronics Technology Institute)
Lee, Hyeung-Gyu (Electronic Materials and Device Research Center, Korea Electronics Technology Institute)
Kim, Jeong-Seog (Department of Semiconductor & Display Engineering, Hoseo University)
Cheon, Chae-Il (Department of Semiconductor & Display Engineering, Hoseo University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.9, 2012 , pp. 692-701 More about this Journal
Abstract
Recently, many lead-free piezoelectric materials have been investigated for the replacement of existing Pb-based piezoelectric ceramics because of globally increasing environmental interest. There has been remarkable improvement in piezoelectric properties of some lead-free ceramics such as $(Bi,Na)TiO_3-(Bi,K)TiO_3-BaTiO_3$, $(Na,K)NbO_3-LiSbO_3$, and so on. However, no one still has comparable piezoelectric properties to lead-based materials. Therefore, new lead-free piezoelectric ceramics are required. $BiFeO_3$ has a rhombohedrally distorted perovskite structure at room temperature and a very high Curie temperature ($T_C$= 1,100 K). And a very large electric polarization of 50 ~ 60 ${\mu}C/cm^2$ has been reported both in epitaxial thin film and single crystal $BiFeO_3$. Therefore, a high piezoelectric effect is expected also in a $BiFeO_3$ ceramics. The recent research activities on $BiFeO_3$ or $BiFeO_3$-based solid solutions are reviewed in this article.
Keywords
Lead-free; Piezoelectric; $BiFeO_3$; Bismuth ferrite; Ceramics;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Hiruma, R. Aoyagi, H. Nagata and T. Takenaka, Jpn. J. Appl. Phys., 44, 5040 (2005).   DOI
2 H. Matsuo, Y. Noguchi, M. Miyayama, M. Suzuki, and M. A. Watanabe J. Appl. Phys., 108, 104103 (2010).   DOI
3 T. Ozaki, Hiroki M., Y. Noguchi, M. Miyayama, and S. Mori, Jpn. J. Appl. Phys., 49, 09MC05 (2010).   DOI
4 J. H. Choi, H. A. Kim, S. H. Han, H. W. Kang, H. G. Lee, J. S. Kim, and C. I. Cheon, The 12th Japan-Korea International Seminar on Ceramics (Okayama, Japan, 2011), EC-O-3.
5 S. O. Leontsev and R. E. Eitel, J. Mater. Res., 26, 9 (2011).   DOI
6 Y. Yao, B. Ploss, C. L. Mak, and K. H. Wong, Appl. Phys., A99, 211 (2010).   DOI
7 M. Kumar, K. L. Yadav, and G. D. Varma, Mater. Lett., 62, 1159 (2008).   DOI   ScienceOn
8 S. H. Han, K. S. Kim, H. G. Kim, H. G. Lee, C. I. Cheon, and J. S. Kim, J. Nanosci. Nanotechnol., 10, 6650 (2010).   DOI
9 D. Lebeugle, D. Colson, A. Forget, and M. Viret, Appl. Phys. Lett., 91, 022907 (2007).   DOI
10 J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, Phys. Rev., B71, 014113 (2005).
11 Y. P. Wang, L. Zhou, M. Zhang, X. Y. Chen, J. M. Liu, and Z. G. Liu, Appl. Phys. Lett., 84, 1731 (2004).   DOI
12 A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loutts, P. Bhattacharya, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, J. Appl. Phys., 97, 093903 (2005).   DOI
13 G. L. Yuan, S. W. Or, Y. P. Wang, Z. G. Liu, and J. M. Liu, Solid State Commun.,. 138, 76 (2006).   DOI   ScienceOn
14 G. L. Yuan, Y. Yang, and S. W. Or, Appl. Phys. Lett., 91, 122907 (2007).   DOI
15 R. Mazumder, D. Chakravarty, D. Bhattacharya, and A. Sen, Mater. Res. Bull., 44, 555 (2009).   DOI
16 J. C. Chen and J. M. Wu, Appl. Phys. Lett., 91, 182903 (2007).   DOI
17 S. Hunpratub, P. Thongbai, T. Yamwong, R. Yimirun, and S. Maensiri, Appl. Phys. Lett., 94, 062904 (2009).   DOI
18 A. Y. Kim, S. H. Han, H. W. Kang, H. G. Lee, J. S. Kim, and C. I. Cheon, Ceram. Int., 38, S397 (2012).   DOI
19 W. Luo, D. Wang, F. Wang, T. Liu, J. Cai, L. Zhang and Y. Liu, Appl. Phys. Lett. 94, 202507 (2009).   DOI
20 S. J. Kim, S. H. Han, H. G. Kim, A. Y. Kim, J. S. Kim, and C. I. Cheon, J. Kor. Phys. Soc., 56, 439 (2010).   DOI
21 J. S. Kim, C. I. Cheon, C. H. Lee, and P. W. Jang, J. Appl. Phys., 96, 468 (2004).   DOI   ScienceOn
22 J. T. Han, Y. H. Huang, X. J. Wu, C. L. Wu, W. Wei, B. Peng, W. Huang, and J. B. Goodenough, Adv. Mater., 18, 2145 (2006).   DOI
23 S. H. Han, K. S. Kim, H. G. Kim, H. G. Lee, J. S. Kim, and C. I. Cheon, Ceram. Int., 36, 1365 (2010).   DOI
24 T. Rojac, M. Kosec, B. Budic, N. Setter, and D. Damjanovic, J. Appl. Phys., 108, 074107 (2010).   DOI
25 Y. Jun, W. Moon, C. Chang, H. Kim, H. S. Ryu, J. W. Kim, K. H. Kim, and S. Hing, Solid State Commun., 135, 133 (2005).   DOI
26 M. Kumar, A. Srinivas, and S. V. Suryanarayana, J. Appl. Phys., 87, 855 (2000).   DOI   ScienceOn
27 S. O. Leontsev and R. E. Eitel, J. Am. Ceram. Soc., 92, 2957 (2009).   DOI
28 Y. J. Lee, J. S. Kim, S. H. Han, H. W. Kang, H. G. Lee, and C. I. Cheon, J. Kor. Phys. Soc., "submitted".
29 L. W. Martin, S. P. Crane, Y .H. Chu, M. B. Holcomb, M. Gajek, M. Huijben, C. H. Yang, N. Balke, and R. Ramesh, J. Phys. Condens. Matter., 20, 434220 (2008).   DOI
30 R. Palai, R. S. Katiyar, H. Schmid, P. Tissot, S. J. Clark, J. Robertson, S. A. T. Redfern, G. Catalan, and J. F. Scott, Phys. Rev., B77, 014110 (2008).   DOI
31 M. I. Morozov, N. A. Lomanova, and V. V. Gusarov, Russian, Journal of General Chemistry, 73, 1676 (2003).   DOI
32 A. Y. Kim, Y. J. Lee, J. S. Kim, S. H. Han, H. W. Kang, H. G. Lee, and C. I. Cheon, J. Kor. Phys. Soc., 60, 83 (2012).   DOI
33 T. Leist, W. Jo, T. Comyn, A. Bell, and J. Roedel, Jpn. J. Appl. Phys., 48, 120205 (2009).   DOI
34 V. F. Freitasw, I. A. Santos, E. Botero, B. M. Fraygola, D. Garcia, and J. A. Eiras, J. Am. Ceram. Soc., 94, 754 (2011).   DOI
35 S. Fujino, M. Murakami, V. Anbusathaiah, S. H. Lim, V. Nagarajan, C. J. Fennie, M. Wuttig, L. Salamanca-Riba, and I. Takeuchi, Appl. Phys. Lett., 92, 202904 (2008).   DOI
36 J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science, 299, 1719 (2003).   DOI   ScienceOn
37 S. T. Zhang, M. H. Lu, D. Wu, Y. F. Chen, and N. B. Ming, Appl. Phys. Lett., 87, 262907 (2005).   DOI
38 W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature, 442, 7595 (2006).
39 G. Catalan and J. F. Scott, Adv. Mater., 21, 2463 (2009).   DOI
40 T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, and S. W. Cheong, Science, 324, 63 (2009).   DOI   ScienceOn
41 F. Gao, Y. Yuan, K. F. Wang, X. Y. Chen, F. Chen, J. M. Liu, and Z. F. Ren, Appl. Phys. Lett., 89, 102506 (2006).   DOI
42 T. J. Park, Y. Mao, and S. S. Wong, Chem. Comm., 23, 2708 (2004).
43 X. Y. Zhang, C. W. Lai, X. Zhao, D. Y. Wang, and J. Y. Dai, Appl. Phys. Lett., 87, 143102 (2005).   DOI   ScienceOn
44 S. Ghosh, S. Dasgupta, A. Sen, and H. S. Maiti, J. Am. Ceram. Soc., 88, 1349 (2005).   DOI
45 T. J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, Nano Lett., 7, 766 (2007).   DOI