• Title/Summary/Keyword: FeCrAlloy

Search Result 352, Processing Time 0.023 seconds

The Effects of Mn and Cr Additions on the Microstructure of A356 Alloys Containing Impure Fe (불순 Fe를 함유한 A356 주조합금에서 미세조직 형성에 관한 Mn과 Cr의 효과)

  • Han, Sang-Won
    • Journal of Korea Foundry Society
    • /
    • v.25 no.3
    • /
    • pp.128-133
    • /
    • 2005
  • The effects of Mn and Cr on the crystallization behaviors of Fe-bearing intennetallics in A356 alloy were studied. Coarse and acicular ${\beta}-Al_{5}$FeSi phase in A356-0.20wt.%Fe alloy was modified into small ${\alpha}$-Al(Fe,Mn)Si and ${\alpha}$-Al(Fe,Cr)Si phases in response to Mn and Cr addition, respectively. Increasing of Mn addition amount elevates the crystallizing temperature of ${\alpha}$-Al(Fe,Mn)Si and the Mn/Fe ratio in the ${\alpha}$-Al(Fe,Mn)Si. Cr is more effective to modify ${\beta}-Al_{5}$FeSi in comparison with Mn. ${\alpha}$-Al(Fe,Mn)Si phase had BCC/SC dual structure.

A Study of Thermodynamical Reaction Path in Fe-Cr-X Alloys at High Temperature Corrosion Environments (고온 부식환경에 대한 Fe-Cr-X 합금의 열역학적 반응경로에 관한 연구)

  • Lee, Byung-Woo;Kim, Woo-Yeol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.411-420
    • /
    • 1996
  • The structure of the scale formed on the surface of Fe - Cr - X alloys exposed to 1143K high sulfidation($Ps_2$ = 1.11$\times$$10^-7$ atm, $Po_2$ = 3.11$\times$$10^-20$ atm) or sulfidation/oxidation(($Ps_2$= 1.06$\times$$10^-7$ atm, ($Po_2$ = 3.11$\times$$10^-18$ atm) environment has been observed and analysed using XRD, SEM/EDS. To investigate the possibility of protective film formed on the surface of the alloys, Aluminium, Nickel were selected as alloying elements. Thermodynamic phase stability diagram was used to predict the reaction path of scale formed on Fe - Cr - X alloys. Parabolic rate constant($K_p$) value with 6wt% Al in Fe - 25Cr alloy decreased significantly compared with the Fe - 25Cr alloy without 6wt% Al. Since thin layer of defect free sulfide film, (Al, Cr)Sx, was formed at the alloy/scale interface. Fe - rich sulfide scale at outer layer and Cr - rich sulfide scale containing porosity at inner layer of Fe - 25Cr alloy have been observed. The reaction path for these scales could be predicted by the thermodynamic stability diagram.

  • PDF

Effects of Cr and Ni on Damping Capacity and Corrosion Resistance of Fe-17%Mn Alloy (Fe-17%Mn 합금의 진동감쇠능 및 내식성에 미치는 Cr, Ni 첨가의 영향)

  • Kim, Jung-Chul;Han, Dong-Woon;Back, Jin-Hyun;Kim, Tai-Hoon;Baik, Seung-Han;Lee, Young-Kook
    • Journal of Korea Foundry Society
    • /
    • v.25 no.2
    • /
    • pp.73-79
    • /
    • 2005
  • Effects of Cr and Ni addition on damping capacity, mechanical property, and corrosion resistance of Fe-17%Mn martensitic alloy have been studied. Martensite start temperature($M_{S}$) of the alloy decreases linearly with increasing Cr and Ni contents up to 15%. The damping capacity decreases gradually from 27 to 22% in specific damping capacity(SDC) with increasing Cr and Ni contents from zero to 10%, and decreases rapidly with further Cr and Ni content in Fe-17%Mn alloy. The tensile strength of the alloy maintains a level of 60 $kgf/mm^{2}$ regardless of Cr content with an elongation of 20 to 25%. But, in case of Fe-17%Mn-x%Ni alloy, the tensile strength decreased rapidly with the Ni content of above 10% because of austenite morphology. Immersion test in 5% NaCl solution leads to the result that the corrosion resistance of the alloy becomes excellent above 10% Cr. From the above results, it is concluded that the optimum Cr content to improve the mechanical property and corrosion resistance of the alloy in 5%NaCl solution with a lesser decrease in damping capacity is about 10%. In the case of 5% $H_{2}SO_{4}$ condition, the Fe-17%Mn-10%Ni is an optimum alloy.

The effect electrolysis conditiong on the composition and the preferred orientation of Co-Fe-Cr alloy electrodeposits (Co-Fe-Cr 합금도금층의 조성 및 우선방위에 미치는 전해조건의 영향)

  • 예길촌;문근호
    • Journal of Surface Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.393-399
    • /
    • 1998
  • The composition and the properred orientation of Co-Fe-Cr alloy electrodeposits were invesigated according to the electrolysis conditions using sulface bath. The current efficiency and the cathode overpotential decrased noticeably with the increase of Cr content in the bath. As the D.C. current density increased increased, the Cr content in the alloy increasd, while Co content decreased and Fe content remained constant, In the pulse current electrolysis, the Cr content of the alloy increased with the mean current density and off-time and then its content increased mord more noticeably with the peak current density than that of D.C. electrolysis. The preferred orientation of the alloy changed from (220)+(111) to (220) with decreasing cathode overpotential.

  • PDF

Effect of Nb and Mo Addition on the Microstructure and Wear Behavior of Fe-Cr-B Based Metamorphic Alloy Coating Layer Manufactured by Plasma Spray Process

  • Yong-Hoon Cho;Gi-Su Ham;So-Yeon Park;Choongnyun Paul Kim;Kee-Ahn Lee
    • Archives of Metallurgy and Materials
    • /
    • v.67 no.4
    • /
    • pp.1521-1524
    • /
    • 2022
  • Fe-Cr-B-based metamorphic alloy coating layers were manufactured by plasma spray with a Fe-Cr-B-Mo-Nb composition (hereinafter, M+) powder. The microstructure and wear properties of the coating layers were investigated and compared with a metamorphic alloy coating layer fabricated with commercial M material. XRD analysis revealed that the M and M+ coating layers were composed of α-Fe, (Cr, Fe)2B, and some metallic glass phases. Wear test results showed that M+ coating layers had a superior wear resistance which had 1.48 times lower wear volume than M coating layers. Observations of the worn-out surfaces and cross-sections of the coating layers showed that M+ coating layer had relatively low oxides along the particle boundaries and it suppress a delamination behavior by the oxides.

Effects of Plasma-Nitriding on the Pitting Corrosion of Fe-30at%Al-5at%Cr Alloy (Fe-30at.%Al-5at.%Cr계 합금의 공식특성에 미치는 플라즈마질화의 영향)

  • 최한철
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.6
    • /
    • pp.480-490
    • /
    • 2003
  • Effects of plasma-nitriding on the pitting corrosion of Fe-30at%Al-5at%Cr alloy containing Ti, Hf, and Zr were investigated using potentiostat in 0.1M HCl. The specimen was casted by the vacuum arc melting. The subsequent homogenization was carried out in Ar gas atmosphere at $1000^{\circ}C$ for 7days and phase stabilizing heat treatment was carried out in Ar gas atmosphere at $500^{\circ}C$ for 5 days. The specimen was nitrided in the $N_2$, and $H_2$, (1:1) mixed gas of $10^{-4}$ torr at $480^{\circ}C$ for 10 hrs. After the corrosion tests, the surface of the tested specimens were observed by the optical microscopy and scanning electron microscopy(SEM). For Fe-30at%Al-5Cr alloy, the addition of Hf has equi-axied structure and addition of Zr showed dendritic structure. For Fe-30at%Al-5Cr alloy containing Ti, plasma nitriding proved beneficial to decrease the pitting corrosion attack by increasing pitting potential due to formation of TiN film. Addition of Hf and Zr resulted in a higher activation current density and also a lower pitting potential. These results indicated the role of dendritic structure in decreasing the pitting corrosion resistance of Fe-30Al-5Cr alloy. Ti addition to Fe-30Al-5Cr decreased the number and size of pits. In the case of Zr and Hf addition, the pits nucleated remarkably at dendritic branches.

The effect of substitution elements(Co, Cr, Fe) on the properties of Zr-based hydrogen storage alloy electrode for Ni-MH secondary battery (Ni-MH 2차 전지용 Zr계 수소저장합금전극의 특성에 미치는 치환원소(Co, Cr, Fe)의 영향)

  • Choi, Seung-Jun;Jung, So-Yi;Seo, Chan-Yeol;Choi, Jeon;Park, Choong-Nyeon
    • Journal of Hydrogen and New Energy
    • /
    • v.10 no.3
    • /
    • pp.185-189
    • /
    • 1999
  • Effects of alloy modification with the $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.4}$ alloy for an electrode use have been investigated. For the alloy composition, a part of Mn was substituted by Co, Cr and Fe. The experimental results showed that Co accelerated activation of alloy, and Fe and Cr improved the discharge capacity. These results agree with P-C-T curves of each alloy. But substituting Fe for Mn showed the decrease of the discharge capacity when discharged at high rate (60mA, about 1C rate). Considering both the discharge capacity and the high rate discharge property, $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.3}Cr_{0.1}$ alloy was found to be the best alloy among the alloys subjected to the test.

  • PDF

Mechanical Properties and Creep Behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe Alloy Cladding Tubes (Zr-Sn-Fe-Cr 및 Zr-Nb-Sn-Fe 합금 피복관의 기계적 특성 및 Creep 거동)

  • Lee, Sang-Yong;Ko, San;Choi, Young-Chul;Kim, Kyu-Tae;Choi, Jae-Ha;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.326-333
    • /
    • 2008
  • Since the 1990s, the second generation of Zirconium alloys containing main alloy compositions of Nb, Sn and Fe have been used as a replacement of Zircaloy-4 (Zr-Sn-Fe-Cr), a first-generation Zirconium alloy, to meet severe and rigorous reactor operating conditions characterized by high-burn-up, high-power and high-pH operations. In this study, the mechanical properties and creep behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe alloys were investigated in a temperature range of $450{\sim}500^{\circ}C$ and in a stress range of $80{\sim}150\;MPa$. The mechanical testing results indicate that the yield and tensile strengths of the Zr-Nb-Sn-Fe alloy are slightly higher compared to those of Zr-Sn-Fe-Cr. This can be explained by the second phase strengthening of the $\beta$-Nb precipitates. The creep test results indicate that the stress exponent for the steady-state creep rate decreases with the increase in the applied stress. However, the stress exponent of the Zr-Sn-Fe-Cr alloy is lower than that of the Zr-Nb-Sn-Fe alloy in a relatively high stress range, whereas the creep activation energy of the former is slightly higher than that of the latter. This can be explained by the dynamic deformation aging effect caused by the interaction of dislocations with Sn substitutional atoms. A higher Sn content leads to a lower stress exponent value and higher creep activation energy.

The Electrochemical Behavior of Ni-base Metallic Glasses Containing Cr in H2SO4 Solutions

  • Arab, Sanaa.T.;Emran, Khadijah.M.;Al-Turaif, Hamad A.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.4
    • /
    • pp.448-458
    • /
    • 2012
  • In order to develop alloy resistance in aggressive sulphat ion, the corrosion behavior of metallic glasses $Ni_{92{\cdot}3}Si_{4.5}B_{32}$, $Ni_{82,3}Cr_7Fe_3Si_{4.5}B_{3.2}$ and $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$ (at %) at different concentrations of $H_2SO_4$ solutions was examined by electrochemical methods and Scanning Electron Microscope (SEM) and X-ray Photoelectron Microscopy (XPS) analyses. The corrosion kinetics and passivation behavior was studied. A direct proportion was observed between the corrosion rate and acid concentration in the case of $Ni_{92{\cdot}3}Si_{4.5}B_{32}$ and $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$ alloys. Critical concentration was observed in the case of $Ni_{82,3}Cr_7Fe_3Si_{4.5}B_{3.2}$ alloy. The influence of the alloying element is reflected in the increasing resistance of the protective film. XPS analysis confirms that the protection film on the $Ni_{92{\cdot}3}Si_{4.5}B_{32}$ alloy was NiS which is less protective than that formed on Cr containing alloys. The corrosion rate of $Ni_{82,3}Cr_7Fe_3Si_{4.5}B_{3.2}$ and $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$. alloys containing 7% and 13% Cr are $7.90-26.1{\times}10^{-3}$ mm/y which is lower about 43-54 times of the alloy $Ni_{92{\cdot}3}Si_{4.5}B_{32}$ (free of Cr). The high resistance of $Ni_{75.5}Cr_{13}Fe_{4.2}Si_{4.5}B_{2.8}$ alloy at the very aggressive media may due to thicker passive film of $Cr_2O_3$ which hydrated to hydrated chromium oxyhydroxide.

MICROSTRUCTURAL EVOLUTION OF SINTER-FORGED Fe-Cr-Mo-C ALLOY DEPENDING ON Cu ADDITION

  • MIN CHUL OH;MOONTAE KIM;JISUNG LEE;BYUNGMIN AHN
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.2
    • /
    • pp.539-542
    • /
    • 2019
  • Pre-alloyed Astaloy CrLTM (Fe-1.5 wt% Cr-0.2 wt% Mo), a commercial Fe-based alloy powder for high strength powder metallurgy products, was sintered and hot forged with additions of 0.5 wt% C and 0~2 wt% Cu. To investigate the influence of various Cu contents, the microstructural evolution was characterized using density measurements, scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). Transverse rupture strength (TRS) was measured for each composition and processing stage. The correlation between Cu additions and properties of sinter-forged Fe-Cr-Mo-C alloy was discussed in detail.