• Title/Summary/Keyword: Fe-system thin film

Search Result 90, Processing Time 0.031 seconds

The effect of deposition condition on the oxidation of TbFeCo thin films in facing targets sputtering system (Facing targets sputtering system에서 TbFeCo박막의 산화에 미치는 제조조건의 영향)

  • 문정탁;김명한
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.511-519
    • /
    • 1994
  • The effect of the deposition conditions, such as the base pressure, working pressure, sputtering power, pre-sputtering, and deposition thickness in facing targets sputtering system(FTS), on the oxidation of the TbFeCo thin films was studied by investigating the magneto-optical properties as well as oxygen analysis by the AES depth profiles. The results showed that the base pressure did not affect the magnetic properties so much, probably due to the short flight distance of the sputtered particles. At the higher sputtering power and lower working pressure with pre-sputtering the oxidation of TbFeCo thin films was decreased. As the film thickness increased the TbFeCo thin films showed the perpendicular anisotropy from in-plane anisotropy overcoming the oxidation effect at the beginning of the sputtering.

  • PDF

Crystal orientation of $Ni_{81}Fe_{19}$ thin film prepared by facing targets sputtering method (대향타겟식 스퍼터법으로 제작한 $Ni_{81}Fe_{19}$박막의 결정배향성)

  • 김용진;박창옥;최동진;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.185-188
    • /
    • 2000
  • Crystal orientation of Ni$_{18}$ $Fe_{19}$ thin films prepared by facing targets sputtering system was investigated. FTS system can deposit a high quality thin film and control deposition conditions in wide range. T he crystallographic characteristics of Ni$_{18}$ $Fe_{19}$ thin films on variation of thickness and substrate tempera ture was investigated by XRD and AFM. As a result, we obtained Ni$_{18}$ $Fe_{19}$ thin films prepared at subst rate temperature room temperature, thickness 160nm and over revealed good crystal orientation to [111] direction.irection.

  • PDF

A Study on Design of Magnetic Thin Film Inductors for DC-DC Converter Applications (DC-DC Converter용 자성박막 인덕터 설계에 관한 연구)

  • 윤의중;김좌연;박노경;김상기;김종대
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.74-83
    • /
    • 2001
  • In this study, the optimum structure of a magnetic thin film inductor was designed for application of DC-DC converters. The Ni$\sub$81/Fe$\sub$19/ (at%) alloy was selected as a high-frequency($\geq$MHz) magnetic thin film magnetron sputtering system. As-deposited NiFe thin films show similar magnetic properties compared to bulk NiFe alloys, indicating that they have a good film quality. The optimum design of dolenoid-type magnetic thin film inductors was performed utilizing a Maxwell computer simulator (Ansoftt HFSS V7.0 for PC) and parameters obtained from the magnetic properties of magnetic core materials selected. The high-frequency characteristics of the inductance(L) and quality factor(Q) obtained for the designed inductors through simulation agreed well with those obtained by theoretical calculations, confirming that the simulated result is realistic. The optimum structure of high-performance (Q$\geq$60, L = 1${\mu}$H, efficiency $\geq$90%), high-frequency ($\geq$5MHz), and solenoid-type magnetic thin film inductors was designed successfully.

  • PDF

Magnetic Properties of Fe-System Thin Films with Non-equilibrium Phases (비평형 Fe계 박막의 자기 특성)

  • Kim, H.S.;Min, B.K.;Song, J.S.;Oh, Y.W.;Lee, W.J.;Lee, D.Y.;Kim, l.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.13-16
    • /
    • 2000
  • In this study, we have fabricated nonequilibrium $Fe_{85.6}Zr_{3.3}B_{5.7}Ag_{5.4}$ thin film, which contains an additional insoluble element Ag, by using DC magnetron sputtering method. We have investigated the magnetic properties of amorphous $Fe_{85.6}Zr_{3.3}B_{5.7}Ag_{5.4}$ thin film as a function of rotational field annealing(RFA). After deposition, the amorphous $Fe_{85.6}Zr_{3.3}B_{5.7}Ag_{5.4}$ thin film annealed by rotational field annealing method at $350^{\circ}C$ for an hour was founded to have high permeability of 8680 of 100 MHz, 0.2 mOe, low coercivity of 0.86 De and very low core loss of 1.3 W/cc at 1 MHz, 0.1T.

  • PDF

A Study on Fabrication of Magnetic Thin Film Inductors for DC-DC Converter

  • Lee, Young-Ae;Kim, Sang-Gi;Do, Seung-Woo;Lee, Yong-Hyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.225-225
    • /
    • 2010
  • In this study, the optimum structure of a magnetic thin film inductor was designed for application of DC-DC converters. The $Ni_{81}Fe_{19}$ (at%) alloy was selected as a high-frequency($\geq$ MHz) magnetic thin film core material and deposited on various substrates (bare Si, $SiO_2$ coated Si) using a high vacuum RF magnetron sputtering system. As-deposited NiFe thin films show similar magnetic properties compared to bulk NiFe alloys, indicating that they have a good film quality. The optimum design of solenoid-type magnetic thin film inductors was performed utilizing a Maxwell computer simulator (Ansoft HFSS V7.0 for PC) and parameters obtained from the magnetic properties of magnetic core materials selected. The high-frequency characteristics of the inductance(L) and quality factor(Q) obtained for the designed inductors through simulation agreed well with those obtained by theoretical calculations, confirming that the simulated result is realistic. The optimum structure of high-performance ($Q{\geq}60$, $L\;=\;1{\mu}H$, efficiency${\geq}90%$), high-frequency (${\geq}5MHz$), and solenoid-type magnetic thin film inductors was designed successfully.

  • PDF

Fabrication and characterization of fe-Ni Invar alloy thin films (Fe-Ni Invar 합금 박막의 증착 및 박막 특성 평가)

  • 김상섭;고영호;최장현;김병일;박용범
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.116-120
    • /
    • 1999
  • Fe-Ni alloy thin films with about 3.5 $\mu\textrm{m}$ thickness were successfully grown on Al-killed steel substrates employing DC magnetron sputtering method, and then the4 film properties were characterized. The deposited film exhibited a fibre texture structure with the relationship of ${110}_\textrm{film}//{111}_\textrm{substrate}$. We found that the adhesion between the film and the substrate was fairly good considering no debonding behavior after the thermal cyclic test of 5,000 times from room temperature to $200^{\circ}C$. Also we found that the Fe-Ni alloy deposition induced a significant decrease of thermal expansion in the film processing, a new material system with much lower thermal expansion coefficient which can be applied more as shadow mask materials than an Al-killed steel sheet.

  • PDF

Effect of Dopants on Electrical Properties of $SnO_2$Thin Film Resistors ($SnO_2$박막저항의 전기적 특성에 미치는 첨가제의 영향)

  • 구본급;강병돈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.8
    • /
    • pp.658-666
    • /
    • 2000
  • Sb and Sb-Fe doped SnO$_2$film resistors were prepared by spray pyrolysis technique. The effects of Sb and Sb-Fe addition on TCR and electrical properties of SnO$_2$film resistors were studied. Also the dependence of electrical properties on the substrate temperature and substrate-nozzle distance was investigated. The Sn-Sb system with 7.9 mol% SbCl$_3$(STO-406) and Sn-Sb-Fe systems with 7.3 mol% SbCl$_3$+7.3 mol% FeCl$_3$(STO-407) and with 3.4 mol% SbCl$_3$+7.7mol% FeCl$_3$(STO-408) were prepared. Both of the systems Sn-Sb and Sn-Sb-Fe represented nonlinearity of TCR with temperature. As the amount of Fe increased TCR was shifted to positive direction. Decreasing Sb or increasing Fe caused resistivity to increase. Also increasing Fe caused the crystallization degree of rutile structure in SnO$_2$film to decrease. The electrical resistivity decreased with increasing substrate temperature The resistivity decreased with increasing substrate-nozzle distance in the ranges from 15 to 25 cm and increased rapidly at the distance over 25cm.

  • PDF

The oxidation of TaFeCo thin films according to the depositio conditions (제조조건에 따른 TbFeCo 박막의 산화)

  • Mun, Jeong-Tak;Kim, Myeong-Han;Lee, Dong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.767-774
    • /
    • 1994
  • The TbFeCo thin films were prepared by the magnetron sputtering system to investigate the effect of the base pressure, film thickness and pre sputtering on the oxidation of the films by analyzing the change of matneto optical properties and by AES depth profile. The films prepared by the facing targets sputtering system represented almost constant magneto optical properties independent of the base pressure resulting from the short flight distance of the sputtered particles. Also, the thin TbFeCo films represented better perpendicular anisotropy as the films thickness increased with pre sputtering. However, it was still needed a deposition rate higher than a certain critical deposition rate to obtain a perfect perpendicular anisotropy even at a very high film thickness.

  • PDF

Possibility of Magnetocapacitor for Multilayered Thin Films

  • Hong, Jong-Soo;Yoon, Sung-Wook;Kim, Chul-Sung;Shim, In-Bo
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.78-82
    • /
    • 2012
  • CoNiFe(CNF)/$BaTiO_3(BTO)$/CoNiFe(CNF) multilayered thin films were deposited on Pt/Ti/$SiO_2$/Si substrates by using pulsed laser deposition (PLD) system. We fabricated three different thin films of BTO, BTO/CNF and CNF/BTO/CNF for magneto-capacitor and studied their crystalline structure, surface and interface morphology, and magnetic and electrical properties. When three different structures of multilayered thin film were compared, magnetization of CNF/BTO/CNF thin films was decreased by magnetic and dielectric interaction. Also we confirmed that capacitance of CNF/BTO/CNF multilayered thin film was enhanced as being near tetragonal structure with increasing of c/a ratio because of atomic bonding at interface between BTO dielectric and CNF magnetic materials. Finally, we studied the change of the capacitance of CNF/BTO/CNF multilayered thin film with magnetic field for emergence of magnetocapacitance and suggested a possibility of enhanced capacitance.

Magnetocapacitance Properties of Multilayered CoFe2O4/BaTiO3/CoFe2O4 Thin Film by Pulsed Laser Deposition

  • Lee, Seong Noh;Shim, Hyun Ju;Shim, In-Bo
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.121-125
    • /
    • 2014
  • $CoFe_2O_4(CFO)/BaTiO_3(BTO)/CoFe_2O_4(CFO)$ multilayered thin films were deposited on $Pt/TiO_2/SiO_2/Si$ substrates by the pulsed laser deposition (PLD) system with KrF excimer laser (${\lambda}=248nm$). BTO, CFO, BTO/CFO and CFO/BTO/CFO structured thin films were prepared and their crystal structures and microstructures, as well as their magnetic and magneto-electrical properties, were studied. The C-V characteristics of these multilayered thin films with different capacitor structures were obtained to confirm the change in their capacitances under a magnetic field. Finally, the capacitance of the CFO/BTO/CFO thin film as a function of bias voltage under an in-plane magnetic field of 1,000 Oe increased to 951.04 pF at 1 MHz, from 831.90 pF measured under no magnetic field, indicating 14.3% increase in magnetocapacitance.