• Title/Summary/Keyword: Fe-based powder

Search Result 231, Processing Time 0.028 seconds

Transparent Conductive Films Composite with Copper Nanoparticle/Graphene Oxide Fabricated by dip Process and Electrospinning

  • Kim, Jin-Un;Kim, Gyeong-Min;Kim, Yong-Ho;Kim, Su-Yong;Jo, Su-Ji;Lee, Eung-Sang;Seok, Jung-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.382.2-382.2
    • /
    • 2014
  • We explain a method to fabricate multi-layered transparent conductive films (TCF) using graphene oxide (GO), copper powder and polyurethane (PU) solution. The flexible graphene nanosheets (GNSs) serve as nanoscale connection between conductive copper nanoparticles (CuNps) and PU nanofibers, resulting in a highly flexible TCF. To fabricate conductive films with high transmittance, polyurethane (PU) nanofibers were used for a conductive network consisting of CuNps and GNSs (CuNps-GNSs). In this experiment, copper powder and graphene oxides were mixed in deionized water with the ultrasonication for 2 h. NaBH4 solution is used as a reduction agents of CuNps and GNSs (CuNps-GNSs) under a nitrogen atmosphere in the oil bath at 100% for 24 h to mixed. The purified and dispersed CuNp-GNS were obtained in deionized water, and diluted to a 10wt.% based on the contents of GNSs. Polyurethane (PU) nanofibers on a PET substrate were formed by electrospinning method. PET slides coated with the PU nanofibers were immersed into CuNp-GNS solution for several second, rinsed briefly in deionized water, and dried to obtain self-assembled CuNp-GNS/PU films. The morphology of the multi-layered films were characterized with a field emission scanning electron microscope (FE-SEM, Hitachi S-4700) and atomic force microscope (AFM, PSIA XE-100). The electrical property was analysed by the I-V measurement system and the optical property was measured by the UV/VIS spectroscopy.

  • PDF

Measurement Method of Prior Austenite Grain Size of Nb-added Fe-based Alloys (Nb 첨가 철계 합금의 Prior austenite 결정립크기 측정 방법)

  • Ko, Kwang Kyu;Bae, Hyo Ju;Jung, Sin Woo;Sung, Hyo Kyung;Kim, Jung Gi;Seol, Jae Bok
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.317-324
    • /
    • 2021
  • High-strength low-alloy (HSLA) steels show excellent toughness when trace amounts of transition elements are added. In steels, prior austenite grain size (PAGS), which is often determined by the number of added elements, is a critical factor in determining the mechanical properties of the material. In this study, we used two etching methods to measure and compare the PAGS of specimens with bainitic HSLA steels having different Nb contents These two methods were nital etching and picric acid etching. Both methods confirmed that the sample with high Nb content exhibited smaller PAGS than its low Nb counterpart because of Nb's ability to hinder austenite recrystallization at high temperatures. Although both etching approaches are beneficial to PAGS estimation, the picric acid etching method has the advantage of enabling observation of the interface containing Nb precipitate. By contrast, the nital etching method has the advantage of a very short etching time (5 s) in determining the PAGS, with the picric acid etching method being considerably longer (5 h).

Synthesis and Investigation of LiVPO4O1-xFxvia Control of the Fluorine Content for Cathode of Lithium-ion Batteries (플루오린 함량 제어를 통한 LiVPO4O1-xFx 합성 및 리튬 이차전지 양극소재 전기화학 특성 분석)

  • Minkyung Kim;Dong-hee Lee;Changyu Yeo;Sooyeon Choi;Chiwon Choi;Hyunmin Yoon
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.516-520
    • /
    • 2023
  • Highly safe lithium-ion batteries (LIBs) are required for large-scale applications such as electrical vehicles and energy storage systems. A highly stable cathode is essential for the development of safe LIBs. LiFePO4 is one of the most stable cathodes because of its stable structure and strong bonding between P and O. However, it has a lower energy density than lithium transition metal oxides. To investigate the high energy density of phosphate materials, vanadium phosphates were investigated. Vanadium enables multiple redox reactions as well as high redox potentials. LiVPO4O has two redox reactions (V5+/V4+/V3+) but low electrochemical activity. In this study, LiVPO4O is doped with fluorine to improve its electrochemical activity and increase its operational redox potential. With increasing fluorine content in LiVPO4O1-xFx, the local vanadium structure changed as the vanadium oxidation state changed. In addition, the operating potential increased with increasing fluorine content. Thus, it was confirmed that fluorine doping leads to a strong inductive effect and high operating voltage, which helps improve the energy density of the cathode materials.

Preparation and Characterization of Black Zirconia Ceramics by Black Color Spinel Pigment (스피넬계 흑색 안료를 이용한 흑색 지르코니아 세라믹스의 제조 및 특성분석)

  • Lee, Kwang-Ho;Lee, Yong-Seok;Park, Joo-Seok;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.214-219
    • /
    • 2008
  • The zirconia ceramics are widely used because of their excellent mechanical properties. Recently, many researches to make a colored zirconia was achieved to satisfy the individual aesthetic requirements. In this study, the synthesis of black-color spinel-based inorganic pigments which are stable above $1400^{\circ}C$ and the fabrication of black-colored zirconia using the synthesized pigments are investigated. Inorganic pigments which have spinel structure and near black color were synthesized by a solid state reaction method using a $Fe_2O_3,\;Cr_2O_3$, CoO and NiO powder as a starting materials at $1600^{\circ}C$. Most of synthesized pigments were black colored spinel phases and single spinel phase was successfully synthesized at the composition range of $Cr_2O_3:25{\sim}35%,\;Fe_2O_3:45{\sim}55%$, CoO:20% and NiO:$6{\sim}10%$. The black-colored zirconia was fabricated at $1410^{\circ}C$ with the 5 wt% synthesized pigments and their properties were evaluated. The results showed that the strength value was more than 848 MPa, absorption rate was 0.1%, the brightness of color was $L^*:40{\sim}42$, the tone of color is $a^*:0.2{\sim}0.8$ and $b^*:-1.1{\sim}2.4$. As a result, the black-colored zirconia was suitable for a artificial jewelry or decoration zirconia goods.

Electrochemical Oxygen Evolution Reaction on NixFe3-xO4 (0 ≤ x ≤ 1.0) in Alkaline Medium at 25℃

  • Pankaj, Chauhan;Basant, Lal
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.497-503
    • /
    • 2022
  • Spinel ferrites (NixFe3-xO4; x = 0.25, 0.5, 0.75 and 1.0) have been prepared at 550℃ by egg white auto-combustion route using egg white at 550℃ and characterized by physicochemical (TGA, IR, XRD, and SEM) and electrochemical (CV and Tafel polarization) techniques. The presence of characteristic vibration peaks in FT-IR and reflection planes in XRD spectra confirmed the formation of spinel ferrites. The prepared oxides were transformed into oxide film on glassy carbon electrodes by coating oxide powder ink using the nafion solution and investigated their electrocatalytic performance for OER in an alkaline solution. The cyclic voltammograms of the oxide electrode did not show any redox peaks in oxygen overpotential regions. The iR-free Tafel polarization curves exhibited two Tafel slopes (b1 = 59-90 mV decade-1 and b2 = 92-124 mV decade-1) in lower and higher over potential regions, respectively. Ni-substitution in oxide matrix significantly improved the electrocatalytic activity for oxygen evolution reaction. Based on the current density for OER, the 0.75 mol Ni-substituted oxide electrode was found to be the most active electrode among the prepared oxides and showed the highest value of apparent current density (~9 mA cm-2 at 0.85 V) and lowest Tafel slope (59 mV decade-1). The OER on oxide electrodes occurred via the formation of chemisorbed intermediate on the active sites of the oxide electrode and follow the second-order mechanism.

Study on Laser Cladding of Heat Resisting Steel Using EuTroLoy 16006 Powder(II) - Characteristics of Alloying Elements Distribution of Multi Pass Clad Layer - (EuTroLoy 16006 분말을 이용한 내열강의 레이저 클래딩에 관한 연구(II) - 멀티패스 클래드 층의 합금 성분 분포 특성 -)

  • Kim, Jong Do;Lee, Eun Jin;Kim, Cheol Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.4
    • /
    • pp.307-312
    • /
    • 2017
  • Laser cladding has some advantages compared to conventional cladding technologies such as arc welding and thermal spraying. Laser cladding produces a metallurgically well-bonded clad layer with a lower dilution ratio and few defects. Based on the characteristics of a 1-pass clad layer with many parameters, which were investigated in a previous report, it was found that it was essential to overlap a 1-pass clad layer when cladding a large area. In this study, the shape differences of multi-pass clad layers with various overlapping ratios were compared. Then, the alloying element distribution of cladding with a certain overlapping ratio was investigated using EDS and EPMA. As the overlapping ratio increased, the length of the clad decreased and its height increased. In addition, the height of the multi-pass cladding was higher than that of the 1-pass cladding under the same condition. The Fe content of the highly diluted first clad was found to be approximately 20 % in an element analysis. However in the area outside of the first clad, the Fe content was decreased to 10 % as a result of minimum dilution, and a uniform distribution of elements was found.

Catalytic oxidation kinetics of iron-containing carbon particles generated from diesel-sprayed hydrogen-air diffusion flame (디젤-분무 수소-공기 확산화염에서 생성된 철-함유 탄소입자의 촉매 산화반응 특성)

  • Kim, Yongho;Kim, Yong-Tae;Kim, Soo Hyung;Lee, Donggeun
    • Particle and aerosol research
    • /
    • v.4 no.2
    • /
    • pp.51-67
    • /
    • 2008
  • In this study, we devoted to kinetic measurement of the catalytic oxidation of iron-containing flame soot particles and better understanding the role of catalytic particles on carbon oxidation in particular at low temperature, targeting on autothermal regeneration of diesel particulate filter by diesel exhaust gas. Carbon-based Fe-containing particles generated by spraying ferrocene-doped diesel fuel in an oxy-hydrogen flame are tested and compared with a commercial carbon black powder for thermogravimetric analysis (TGA), secondary ion mass spectrometry (SIMS), Fourier-transform infrared spectroscopy (FTIR), Induced coupled plasma-Atomic emission spectroscopy (ICP-AES), and High-resolution transmission electron microscopy (HR-TEM). As a result, we found that a small amount of the ferrocene addition led to significant reductions in a on-set temperature and an activation energy of the carbon oxidation as well. An oxygenated surface complex forming at the particle surface could be thought as active species that would be readily consumed in particular at low temperature.

  • PDF

3D porous ceramic scaffolds prepared by the combination of bone cement reaction and rapid prototyping system

  • Yun, Hui-Suk;Park, Ui-Gyun;Im, Ji-Won
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.56.2-56.2
    • /
    • 2012
  • Clinically-favored materials for bone regeneration are mainly based on bioceramics due to their chemical similarity to the mineral phase of bone. A successful scaffold in bone regeneration should have a 3D interconnected pore structure with the proper biodegradability, biocompatibility, bioactivity, and mechanical property. The pore architecture and mechanical properties mainly dependent on the fabrication process. Bioceramics scaffolds are fabricated by polymer sponge method, freeze drying, and melt molding process in general. However, these typical processes have some shortcomings in both the structure and interconnectivity of pores and in controlling the mechanical stability. To overcome this limitation, the rapid prototyping (RP) technique have newly proposed. Researchers have suggested RP system in fabricating bioceramics scaffolds for bone tissue regeneration using selective laser sintering, powder printing with an organic binder to form green bodies prior to sintering. Meanwhile, sintering process in high temperature leads to bad cost performance, unexpected crystallization, unstable mechanical property, and low bio-functional performance. The development of RP process without high thermal treatment is especially important to enhance biofunctional performance of scaffold. The purpose of this study is development of new process to fabricate ceramic scaffold at room temperature. The structural properties of the scaffolds were analyzed by XRD, FE-SEM and TEM studies. The biological performance of the scaffolds was also evaluated by monitoring the cellular activity.

  • PDF

Preparation of SiO2-CuO-CeO2 Composite Powders and Its Thin Film Templated with Oxalic Acid

  • Son, Boyoung;Jung, Miewon
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.526-530
    • /
    • 2012
  • Silica-based ceramic-matrix composites have shown promise as advanced materials for many applications such as chemical catalysts, ceramics, pharmaceuticals, and electronics. $SiO_2$-CuO-$CeO_2$ multi-component powders and their thin film, using an oxalic acid template as a chelating agent, have larger surface areas and more uniform pore size distribution than those of inorganic acid catalysts. $SiO_2$-CuO-$CeO_2$ composite powders were synthesized using tetraethylorthosilicate, copper (II) nitrate hemi (pentahydrate), and cerium (III) nitrate hexahydrate with oxalic acid as template or pore-forming agent. The process of thermal evolution, the phase composition, and the surface morphology of these powders were monitored by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffractometry (XRD), field-emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectrometry (EDXS). The mesoporous property of the powders was observed by Brunner-Emmett-Teller surface (BET) analysis. The improved surface area of this powder template with oxalic acid was $371.4m^2/g$. This multi-component thin film on stainless-steel was prepared by sol-gel dip coating with no cracks.

Study on the Mineral Contents of Commercial powdered infant formula (유아용 조제분유의 무기물 함량에 관한 연구)

  • Kim, Min-Jung;Park, Eun-Kyung;Jun, Mi-Ra;Kim, Young-Gil
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.836-840
    • /
    • 2007
  • This study was conducted to investigate mineral contents of commercial powdered infant formula for obtaining basic data on infant nutrition. 11 Commercial infant formula based on cow's milk were collected and the contents of macro minerals (calcium, phosphorous, sodium, potassium and magnesium) and trace minerals (iron, zinc and copper) were compared with Dietary Reference Intakes for Koreans (KDRIs). The overall mineral contents in 100 g and in 100 kcal of infant formula satisfied the recommended formula regulation and Codex. In infant formula during 0-5 monthly age, calcium, phosphorous, sodium, potassium, magnesium, zinc and copper could supply 233.1%, 273.5%, 156.7%, 142.0%, 150.8%, 209.3%, 171.1% of recommended daily mineral intakes, respectively. The content of iron in 0-5 monthly age formula supplied2842.6% of recommended daily iron intakes. In infant formula during 6-11 monthly age, calcium, phosphorous, potassium, magnesium, iron, zinc and copper satisfied their recommended daily intakes. However, sodium only supplied 76.6% of its recommended daily intake. Intake ratio between Ca/P, Ca/Mg, Ca/Fe, Na/K and Zn/cu in infant formula during 0-5 monthly age were 1.7±0.2, 11.0±2.4,64.9±10.0, 0.3±0.1, and 9.6±1.0, respectively. Intake ratio between Ca/P, Ca/Mg, Ca/Fe, Na/K and Zn/cu in infant formula during 6-11 monthly age were 1.7${\pm}$0.2, 12.9${\pm}$1.5, 80.1${\pm}$13.8, 0.3, and 9.4${\pm}$1.1,respectively. From this study, evaluation of mineral contents of commercial infant formula was established, which could strengthen the basic information on infant nutrition.