• Title/Summary/Keyword: Fe-based alloys

Search Result 219, Processing Time 0.025 seconds

Microstructure and Mgnetic Properties of Electrodeposited Nanocrystalline Low-Nickel Permalloy (전착법으로 제조한 나노결정질 저Ni 퍼멀로이의 미세 조직과 자기적 특성)

  • 허영두;이흥렬;황태진;임태홍
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.6
    • /
    • pp.455-460
    • /
    • 2003
  • Microstructural and magnetic properties of nanocrystalline Fe-46 wt%Ni and Fe-36 wt%Ni alloys were investigated. Alloys were prepared by the electrodeposition process. The electrolytes were iron sulfate/nickel chloride-based and iron chloride/nickel sulfamate-based solutions. Fe-46 wt%Ni alloy was FCC structure with grain size of 10 nm, but FCC and BCC phases were found in Fe-36 wt%Ni alloy and its grain size was smaller. Effective permeability of Fe-36 wt%Ni alloy was higher than that of Fe-46 wt%Ni alloy in the high frequency range because of large electrical resistivity and small eddy current loss resulted from grain size decrease. Up to $300^{\circ}C$ of annealing temperature, grain growth of Fe-Ni alloys slowly occured. Conversely, annealing above $450^{\circ}C$ led to a drastic grain growth. In that case, effective permeability was decreased at the temperature lower than $300^{\circ}C$ but at $300^{\circ}C$ or higher effective permeability was increased. At the high frequency of 1 MHz, electrodeposited Fe-Ni alloys had higher effective permeability with an decrease in the grain size.

Analysis of Wear Resistance and Wear Mechanism Change of Ti-5Mo-xFe (x=2,4 wt%) Alloys Based on Fe Addition (Ti-5Mo-xFe (x=2,4 wt%) 합금의 Fe 첨가에 따른 마모 메커니즘 변화와 내마모 특성 분석)

  • Yeong-Hun Jung;Yong-Jae Lee;Dong-Geun Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.5
    • /
    • pp.247-254
    • /
    • 2024
  • Metastable β titanium alloys have been used in implants due to their high specific strength and excellent corrosion resistance. However, the high cost of β-stabilizing elements limits the application of metastable β titanium alloys. Consequently, research has been conducted on low-cost metastable β titanium alloys using relatively inexpenisve β-stabilizing elements such as Mo and Fe. This study analyzes the wear resistance of Ti-5Mo-xFe (x=2,4 wt%) alloys, designed and manufactured as low-cost metastable β titanium alloys. The wear mechanisms of Ti-5Mo-xFe alloys were identified through ball-on disk testing and observation of the worn surfaces. Additionally, the influence of Fe addition on the microstructure and the resulting changes in wear resistance were examined. The wear resistance of the Ti-5Mo-xFe alloys were evaluated in comparison to the Ti-6Al-4V ELI alloy.

Characterization of Oxide Scales Formed on Fe3Al, Fe3Al-Cr, Fe3Al-Cr-Mo, Ni3Al and Ni3Al-Cr Alloys (Fe3Al, Fe3Al-Cr, Fe3Al-Cr-Mo, Ni3Al 및 Ni3Al-Cr 합금표면에 형성된 산화물 특성분석)

  • Shim, Woung-Shik;Lee, Dong-Bok
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.845-849
    • /
    • 2002
  • Alloys of $Fe_3$Al, $Fe_3$Al-6Cr, $Fe_3$Al-4Cr-1Mo, $Ni_3$Al, and $Ni_3$Al-2.8Cr were oxidized at $1000^{\circ}C$ in air, and the oxide scales formed were studied using XRD. SEM, EPMA, and TEM. The oxide scales that formed on $Fe_3$Al-based alloys consisted primarily of $\alpha$-$Al_2$$O_3$ containing a small amount of dissolved Fe and Cr ions, whereas those that formed on $Ni_3$Al-based alloys consisted primarily of $\alpha$-$Al_2$$O_3$, together with a small amount of $NiAl_2$$O_4$, NiO and dissolved Cr ions. For the entire alloys tested, nonadherent oxide scales formed, and voids were inevitably existed at the scale-matrix interface.

Review of Types, Properties, and Importance of Ferrous Based Shape Memory Alloys

  • Rahman, Rana Atta Ur;Juhre, Daniel;Halle, Thorsten
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.381-390
    • /
    • 2018
  • Shape memory alloys(SMAs) have revolutionized the material engineering sciences as they exhibit exclusive features i.e. shape memory effect(SME) and super-elasticity. SMAs are those alloys that when deform return to their predeformed shape upon heating, they also restore their original shape by removing the load. Research on properties of newly advent of several types of ferrous based shape memory alloys(Fe-SMAs), shows that they have immense potential to be the counterpart of Nitinol(NiTi-SMA). These Fe-SMAs have been used and found to be effective because of their low cost, high cold workability, good weldability & excellent characteristics comparing with Nitinol(high processing cost and low cold workability) SMAs. Some of the Fe-SMAs show super-elasticity. Fe-SMAs, especially Fe-Mn-Si alloys have an immense potential for civil engineering structures because of its unique properties e.g. two-way shape memory effect, super elasticity and shape memory effect as well as due to its low cost, high elastic stiffness and wide transformation hysteresis comparative to Nitinol. Further research is being conducted on SMAs to improve and impinge better attributes by improving the material compositions, quantifying the SMA phase transition temperature etc. In this research pre-existing Fe-SMAs are categorised and collected in a tabulated form. An analysis is performed that which category is mostly available. Last 50 years data of Fe-SMA publications and US Patents is collected to show its importance in terms of increasing research on such type of alloys to invent different compositions and applications. This data is analysed as per different year groups during last 50 years and it was analysed as per whether the keywords exist in title of an article or anywhere in the article. It was found that different keywords related to Fe-SMAs/categories of Fe-SMAs, almost don't exist in the title of articles. However, these keywords related to Fe-SMAs/categories of Fe-SMAs, exist inside the article but still there are not too many publications related to Fe-SMAs/categories of Fe-SMAs.

The Effect of P and Mo for Thermal and Chemical Properties of Fe-PC-B-Al-Mo Amorphous Alloys (Fe-P-C-B-Al-Mo계 비정질합금의 열적.화학적 성질에 미치는 P 및 Mo의 영향)

  • Gook, Jin-Seon;Chon, Woo-Young
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.2
    • /
    • pp.76-81
    • /
    • 2002
  • The melt-spun amorphous $Fe_{77-X}P_{13}C_4B_4Al_2Mo_X$(x=4~10) and $Fe_{82-X}P_XC_4B_4Al_2Mo_8$(x=9~15) alloys were found to exhibit a large supercooled liquid region(${\Delta}T_x$) exceeding 40 K before crystallization. The largest ${\Delta}T_x$ for the glassy alloys containing Mo reaches as large as 65 K for the $Fe_{69}P_{13}C_4B_4Al_2Mo_8$ alloy. The corrosion behavior of the amorphous $Fe_{77-X}P_{13}C_4B_4Al_2Mo_X$(x=4~15) and $Fe_(82-X)P_XC_4B_4Al_2Mo_8$ (x=9~17) alloys were examined by electrochemical measurements in 9M $H_2SO_4$ solution at 303 K. The addition of Mo(or P) for replacing some portion of Fe is effective in improving the corrosion resistance of the investigated Fe-based glassy alloys. They are spontaneously passivated and have a wide passive region with low passive current density.

Effectiveness of Ni-based and Fe-based cladding alloys in delaying hydrogen generation for small modular reactors with increased accident tolerance

  • Alan Matias Avelar;Fabio de Camargo;Vanessa Sanches Pereira da Silva;Claudia Giovedi;Alfredo Abe;Marcelo Breda Mourao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.156-168
    • /
    • 2023
  • This study investigates the high temperature oxidation behaviour of a Ni-20Cr-1.2Si (wt.%) alloy in steam from 1200 ℃ to 1350 ℃ by Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Diffraction (XRD). The results demonstrate that exposed Ni-based alloy developed a thin oxide scale, consisted mainly of Cr2O3. The oxidation kinetics obtained from the experimental results was applied to evaluate the hydrogen generation considering a simplified reactor core model with different cladding alloys following an unmitigated Loss-Of-Coolant Accident (LOCA) scenario in a hypothetical Small Modular Reactor (SMR). Overall, experimental data and simulations results show that both Fe-based and Ni-based alloys may enhance cladding survivability, delaying its melting, as well as reducing hydrogen generation under accident conditions compared to Zr-based alloys. However, a substantial neutron absorption occurs when Ni-based alloys are used as cladding for current uranium-dioxide fuel systems, even when compared to Fe-based alloys.

Effects of Mg Content on the Properties and Casting Characteristics of Al-2Zn-0.2Fe-xMg Alloys (Al-2Zn-0.2Fe-xMg 합금의 물성 및 주조특성에 미치는 Mg함량의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ki-Tae;Ko, Se-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.86-90
    • /
    • 2012
  • Aluminium-silicon based casting alloys have received an attention for high electrical and thermal conductivity applications, however relatively low conductivity of Al-Si alloys often limits the application. Efforts have been made to develop new high conductivity aluminium casting alloys containing no or less silicon. In this study Al-Zn-Fe based alloys were selected as the new alloys, and the effect of Mg additions on their properties and casting characteristics were investigated. As the magnesium content was increased, the tensile strength of Al-2Zn-0.2Fe based alloy was remarkably increased, while the electrical conductivity was deteriorated. It was observed that the fluidity of the alloys was generally inversely proportional to the Mg content but the hot cracking resistance was rather proportional to it. Cooling curve analyses were carried out to measure the actual solidification range and dendrite coherency temperature.

EFFECTS OF ADDING NIOBIUM AND VANADIUM TO Fe-BASED OXIDE DISPERSION STRENGTHENED ALLOY

  • CHUN WOONG PARK;WON JUNE CHOI;JONG MIN BYUN;YOUNG DO KIM
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1265-1268
    • /
    • 2020
  • In this study, the effects of adding niobium and vanadium to Fe-based oxide dispersion strengthened alloys are confirmed. The composition of alloys are Fe-20Cr-1Al-0.5Ti-0.5Y2O3 and Fe-20Cr-1Al-0.5Ti-0.3V-0.2Nb-0.5Y2O3. The alloy powders are manufactured by using a planetary mill, and these powders are molded by using a magnetic pulsed compaction. Thereafter, the powders are sintered in a tube furnace to obtain sintered specimens. The added elements exist in the form of a solid solution in the Fe matrix and suppress the grain growth. These results are confirmed via X-ray diffraction and scanning electron microscopy analyses of the phase and microstructure of alloys. In addition, it was confirmed that the addition of elements, improved the hardness property of Fe-based oxide dispersion strengthened alloys.

Microstructural Characterization of Gas Atomized Copper-Iron Alloys with Composition and Powder Size

  • Abbas, Sardar Farhat;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.19-24
    • /
    • 2018
  • Cu-Fe alloys (CFAs) are much anticipated for use in electrical contacts, magnetic recorders, and sensors. The low cost of Fe has inspired the investigation of these alloys as possible replacements for high-cost Cu-Nb and Cu-Ag alloys. Here, alloys of Cu and Fe having compositions of $Cu_{100-x}Fe_x$ (x = 10, 30, and 50 wt.%) are prepared by gas atomization and characterized microstructurally and structurally based on composition and powder size with scanning electron microscopy (SEM) and X-ray diffraction (XRD). Grain sizes and Fe-rich particle sizes are measured and relationships among composition, powder size, and grain size are established. Same-sized powders of different compositions yield different microstructures, as do differently sized powders of equal composition. No atomic-level alloying is observed in the CFAs under the experimental conditions.

Toward high-performance iron based alloys: Ab initio study

  • Kang, S.J.;Kim, Mi-Young;Kwon, Young-Kyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.53-53
    • /
    • 2010
  • Car industry has required light-weight steels, but still with strong mechanical strength. To meet this requirement, a variety of researches on Fe-Al alloys have been performed. As Al is being added in a disordered manner, alloys become more ductile and show higher yield stress. At a certain concentration of Al, however, the Fe-Al alloy system falls in a second phase whose mechanical strength is worsened. To understand the microscopic role of Al, we investigate the stability and the elastic properties of various Fe-Al alloys using ab initio density functional theory. At agiven Al concentration, the equilibrium geometry is obtained among several disordered Fe-Al alloy structures by performing the geometry relaxation. The formation energies and elastic properties such as bulk moduli of the equilibrium structures are also computed as a function of Al concentration. We also investigate the effects of different elements such as Si and Mn. Fe-Si alloy systems exhibit unusual mechanical behaviors requiring further investigation to understand their physical origin. Especially, the microscopic role of Mn is investigated to find its physical origin of preventing the Fe-Al alloy system from forming an unfavorable second phase. The effect of manganese on mechanical properties of Fe-based alloys is also explored.

  • PDF