• Title/Summary/Keyword: Fe-Si-Al

Search Result 886, Processing Time 0.021 seconds

Effects of the Solid Solution Treatment Conditions and Casting Methods on Mechanical Properties of Al-Si-Cu Based Alloys (Al-Si-Cu계 합금의 주조법과 용체화처리 조건이 기계적 특성변화에 미치는 영향)

  • Moon, Min-Kook;Kim, Young-Chan;Kim, Yu-Mi;Choi, Se-Weon;Kang, Chang-Seog;Hong, Sung-Kil
    • Journal of Korea Foundry Society
    • /
    • v.38 no.6
    • /
    • pp.111-120
    • /
    • 2018
  • In this study, the effects of two different casting methods (gravity casting and, diecasting) and various solid-solution conditions on the mechanical properties of ASC (Al-10.5wt%Si-1.75wt%Cu) and ALDC12 (Al-10.3wt%Si-1.72wt%Cu-0.76wt%Fe-0.28wt% Mn-0.32wt%Mg-0.9wt%Zn) alloys were investigated. A thermodynamic solidification analysis program (PANDAT) was used to predict the liquidus, solidus, and phases of the used alloys. In the results of an XRD analysis, ${\beta}$-AlFeSi peaks were observed only in the ALDC12 alloy regardless of the casting method or SST (solid-solution treatment) conditions. However, according to the results of a FE-SEM observation, both ${\theta}(Al_2Cu)$ and ${\beta}$-AlFeSi were found to exist besides ${\alpha}$-Al and eutectic Si in the gravity-casted ASC alloy at $500^{\circ}C$ after a SST of 120min. The ${\alpha}$-AlFeSi and ${\beta}$-AlFeSi phases including the eutectic phases were also found to exist in the ALDC12 alloy. The results of a microstructural observation and analyses by XRD, FE-SEM and EDS were in good agreement with the PANDAT results. The gravity-casted ALDC12 and ASC specimens showed the highest Y.S. and UTS values after aging for three hours at $180^{\circ}C$ after a SST at $500^{\circ}C$ for 30min. At longer solid-solution treatment times at $500^{\circ}C$ in the gravity-casted ALDC12 and ASC specimens, the elongations of the ASC alloys increased, whereas they decreased slightly in the ALDC12 alloys.

Electronic Structures of half-metallic phase of ternary Fe_2TX (T = 3d transition metal and X = Al, Si) (절반금속 Fe_2TX 화합물의 전자구조 연구 (T = 3d 전이금속; X = Al, Si))

  • Park, Jin-Ho;Kwon, Se-Kyun;Byung ll Min
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.584-584
    • /
    • 2000
  • Electronic structures of ordered Fe$_3X (X = Al, Si), and their derivative ternary alloys of Fe_2TX (T = 3d transition metal) have been investigated by using the linearized muffin-tin orbital (LMTO) band method. The role of the coupling between substituted transition metal and its neighbors is investigated by calculating the magnetic moments and local density of states (LDOS). It is shown that it is essential to include the coupling beyond nearest neighbors in obtaining the magnetic moment of Fe alloy. The preferential sites of T impurities in Fe_3X are determined from the total energy calculations. The derivative ternary alloys of Fe_2TX have characteristic electronic structures of semi-metal for Fe_2VAI and (nearly) half-metal for Fe_2TAI (T = Cr, Mn) and Fe_2TSi (T = V, Cr, Mn)

  • PDF

Effect of Cu and Mg on Forging Property and Mechanical Behavior of Powder Forged Al-Si-Fe Based Alloy

  • Lee, Dong-Suk;Jung, Taek-Kyun;Kim, Mok-Soon;Kim, Won-Yong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1000-1001
    • /
    • 2006
  • Two atomized alloy powders were pre-compacted by cold and subsequently hot forged at temperatures ranging from 653K to 845K. The addition of Cu and Mg causes a decrease in the eutectic reaction temperature of Al-10Si-5Fe-1Zr alloy from 841K to 786K and results in a decrease of flow stress at the given forging temperature. TEM observation revealed that in addition to Al-Fe based intermetallics, $Al_2Cu$ and $Al_2CuMg$ intermetallics appeared. The volume fraction of intermetallic dispersoids increased by the addition of Cu and Mg. Compressive strength of the present alloys was closely related to the volume fraction of intermetallic dispersoids.

  • PDF

Oxidation of CrAlMgSiN thin films between 600 and 900℃ in air (CrAlMgSiN 박막의 600-900℃에서의 대기중 산화)

  • Won, Seong-Bin;Xu, Chunyu;Hwang, Yeon-Sang;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.112-113
    • /
    • 2013
  • Thin CrAlMgSiN films, whose composition were 30.6Cr-11.1Al-7.3Mg-1.2Si-49.8N (at.%), were deposited on steel substrates in a cathodic arc plasma deposition system. They consisted of alternating crystalline Cr-N and AlMgSiN nanolayers. After oxidation at $800^{\circ}C$ for 200 h in air, a thin oxide layer formed by outward diffusion of Cr, Mg, Al, Fe, and N, and inward diffusion of O ions. Silicon ions were relatively immobile at $800^{\circ}C$. After oxidation at $900^{\circ}C$ for 10 h in air, a thin $Cr_2O_3$ layer containing dissolved ions of Al, Mg, Si, and Fe formed. Silicon ions became mobile at $900^{\circ}C$. After oxidation at $900^{\circ}C$ for 50 h in air, a thin $SiO_2-rich$ layer formed underneath the thin $Cr_2O_3$ layer. The film displayed good oxidation resistance. The main factor that decreased the oxidation resistance of the film was the outward diffusion and subsequent oxidation of Fe at the sample surface, particularly along the coated sample edge.

  • PDF

Fabrication of Sintered Thermistor Body of Fe-Al-Si-O System by Solid Reaction Method (고상반응법에 의한 Fe-Al-Si-Ti-O계 써어미스터 소결체 합성)

  • Gam, Kee-Sool;Gang, Gi-Hun
    • Korean Journal of Materials Research
    • /
    • v.1 no.4
    • /
    • pp.198-205
    • /
    • 1991
  • Sintered thermistor body was fabricated by solid reaction method using $Fe_2O_3, \;Al_2O_3, \;TiO_2$ and Si powder. Surface matrix of sintered body was investigated by SEM and $\beta$-constant was obtained from measurement of resistance variation in liquid bath. The values of thermistor constant $\beta$ of samples in the temperature range $-50~+50^{\circ}C$ were distributed from 927 to 4005k. This thermistor body can be used as temperature sensor for radiosonde.

  • PDF

Al-Fe Partitioning between Coexisting Garnet and Epidote from Metamorphic Rocks

  • Kim, Hyung-Shik;Kim, Young-Kyum;Jang, Young-Nam
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.63-73
    • /
    • 1993
  • The assemblage epidote and grandite garnet occurs in low-to medium-grade metabasites and calc schists of various geotectonic settings and in hydrothermally altered calcareous rocks in skarn deposits. The compositions of sixteen epidote-garnet paris have been analysed by means of electron microprobe. Al-Fe partitioning between coexisting grandite garnet and epidote is considered and measured at the grain boundaries on the supposition that the surface equilibrium was maintained in the following exchange reaction: 2$Ca_2Al_3Si_3O_12$(OH)+$Ca_3Fe_2Si_3O_12$=2$Ca_2A_l2FeSi_3O_12$(OH)+$Ca_3Al_2Si_3O_12$ Partition coefficients confirms the differences in thermal conditions between low-grade and medium-grade metamorphic rocks. $K_D$ values ($X_{$CO_2$}$=($Fe^{+3}$/Al)$^{Ep}$/($Fe^{+3}$/Al)$^{Gr}$, where Fe=$Fe^{+3}$) from greenschist facies rocks of the estimated metamorphic temperatures, 330~$390^{\circ}C$, range approximately between 0.02 and 0.17. Epidote-amphibolite facies rocks and calcareous skarns of the estimated temperatures, 400~$550^{\circ}C$, have $K_D$ values between 0.24 and 0.37. $K_D$ values from the rocks of the temperatures, 640~$700^{\circ}C$, range nearly between 0.58 and 0.75. The diagrams in Figs. 2 and 3 can serve as a mineralogic thermometer for relatively shallow rocks, assuming that the pressure dependence of partition coefficients for the iron-exchange reaction in the two minerals can be neglected.

  • PDF

CoFe Layer Thickness and Plasma Oxidation Condition Dependence on Tunnel Magnetoresistance (CoFe의 삽입과 산화조건에 따른 자기 터널 접합의 자기저항특성에 관한 연구)

  • 이성래;박병준
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.196-201
    • /
    • 2001
  • The dependence of CoFe interfacial layer thickness and plasma oxidation condition on tunneling magnetoresistance (TMR) in Ta/NiFe/FeMn/NiFe/Al$_2$O$_3$/NiFe/Ta tunnel junctions was investigated. As the CoFe layer thickness increases, TMR ratio rapidly increases to 13.7 % and decreases with further increase of the CoFe layer thickness. The increase of TMR with the CoFe thickness up to 25 was thought to be due mails to the high spin-polarization of CoFe. The maximum MR of 15.3% was obtained in the Si(100)/Ta(50 )/NiFe(60 )/FeMn(250 )/NiFe(70 )/Al$_2$O$_3$/NiFe(150 )/Ta(50 ) magnetic tunnel junction with a 16 Al oxidized for 40 sec using a Ar/O$_2$ (1:4) mixture gas.

  • PDF

Synthesis of Extremely Fine Fe-6Al-9Si Alloy Powders by Chemical-Mechanical Hybrid Process (화학적-기계적 혼성공정에 의한 초미세 Fe-6Al-9Si 합금분말의 합성)

  • Yoon Jong Woon;Lee Kee-Sun
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.166-171
    • /
    • 2005
  • Fe-6Al-9Si(N) alloy powders were synthesized by hybrid process of chemical nitrification and mechanical milling. The nitriding treatment on Fe-6Al-9Si alloy powders formed $\gamma'-Fe_4N$ phase on the powders surface. The nitriding-treated powders were pulverized by horizontal high-energy ball milling machine. The longer ball milling time tended to reduce the size of alloy powders. In ball milling for 36h, extremely fine powders with about $7\~9wt\%$ nitrogen were obtained. Through X-ray diffraction analysis on the powders, it was found out that the longer milling time caused a disappearance of the crystallinity of $\alpha-Fe$ in the powders. TEM study confirmed that the powders is comprised of a few tens nano-meter sized crystals, including $\alpha-Fe$ phase with partially $\gamma'-Fe_4N$ phase. Hysteresis curves of the synthesized powders measured by VSM revealed lower saturation magnetization and higher coercivity, which seemed to be attributed to nitrogen-impregnation and severe residual stress developed during the high energy milling. Microstructure observation on the powder annealed at 873 K for 1 h showed 10 to 20 nm sized $\alpha-Fe$ crystal. Such a enhanced crystallinity significantly increased the magnetization and decreased the coercivity, which was attributed to not only the crystallinity but also residual stress relaxation.