• 제목/요약/키워드: Fe-Ni alloy

검색결과 444건 처리시간 0.027초

액중 전기선 폭발법에 의한 Ni-free Fe계 나노 합금분말의 제조: 2. 용매의 영향 및 제조 방법에 따른 분말입자의 비교 (Fabrication of Ni-free Fe-based Alloy Nano Powder by Pulsed Wire Evaporation in Liquid: Part 2. Effect of Solvent and Comparison of Fabricated Powder owing to Fabrication Method)

  • 류호진;이용희;손광욱;공영민;김진천;김병기;윤중열
    • 한국분말재료학회지
    • /
    • 제18권2호
    • /
    • pp.112-121
    • /
    • 2011
  • This study investigated the effect of solvent on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid and compared the alloy particles fabricated by three different methods (PWE in liquid, PWE in Ar, plasma arc discharge), for high temperature oxidation-resistant metallic porous body for high temperature soot filter system. Three different solvents (ethanol, acetone, distilled water) of liquid were adapted in PWE in liquid process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. The alloy powder synthesized by PWE in ethanol has good particle size and no surface oxidation compared to that of distilled water. Since the Fe-based alloy powders, which were fabricated by PWE in Ar and PAD process, showed surface oxidation by TEM analysis, the PWE in ethanol is the best way to fabricate Fe-based alloy nano powder.

원전 1차측 수화학 환경에서 수소 농도가 Alloy 600의 표면산화 거동에 미치는 영향 (Effect of Hydrogen Concentration on Surface Oxidation Behavior of Alloy 600 in Simulated Primary Water of Pressurized Water Reactor)

  • 임연수;김동진;김성우;황성식;김홍표;조성환
    • Corrosion Science and Technology
    • /
    • 제21권6호
    • /
    • pp.466-475
    • /
    • 2022
  • Surface oxides and intergranular (IG) oxidation phenomena in Alloy 600 depending on hydrogen concentration were characterized to obtain clear insight into the primary water stress corrosion cracking (PWSCC) behavior upon exposure to pressurized water reactor primary water. When hydrogen concentration was between 5 and 30 cm3 H2/kg H2O, NiFe2O4 and NiO type oxides were found on the surface. NiO type oxides were found inside the oxidized grain boundary when hydrogen concentration was 5 cm3 H2/kg H2O. However, only NiFe2O4 spinel on the surface and Ni enrichment were observed when hydrogen concentration was 30 cm3 H2/kg H2O. These results indicate that the oxidation/reduction reaction of Ni in Alloy 600 depending on hydrogen concentration can considerably affect surface oxidation behavior. It appears that the formation of NiO type oxides in a Ni oxidation state and Ni enrichment in a Ni reduction (or metallic) state are common in primary water. It is believed that the above different oxidation/reduction reactions of Ni in Alloy 600 depending on hydrogen concentration can also significantly affect the resistance to PWSCC of Alloy 600.

Plasma Paste Boronizing법에 의한 Ni-Cr-Mo강의 붕화물층 생성거동과 내 토사마모특성에 관한 특성 (A Study On the Sand Wear Resistance and Formation Behavior of Boride Layer Formed on Ni-Cr-Mo Steel by Plasma Paste Boronizing Treatment)

  • 조재현;박학균;손근수;윤재홍;김현수;김창규
    • 한국재료학회지
    • /
    • 제14권1호
    • /
    • pp.52-58
    • /
    • 2004
  • The surface property and formation behavior of a boride layer formed on Ni-Cr-Mo steel in a plasma paste boronizing treatment were investigated. The plasma paste boronizing treatment was carried out at 973~1273 K for 1-7 hrs under the gas ratio of Ar:H$_2$ (2:1). The thickness of the boride layer increased with increasing temperature and time in the boronizing treatment. The cross-section of the boride layer was a tooth structure and the hardness was Hv 2000~2500. XRD analysis revealed that the compound was identified as FeB, $Fe_2$B, and mixed phase of FeB/$Fe_2$B in the boride layer formed at 973~1073 K, 1173K, and 1273K, respectively. The Ni-Cr-Mo alloy boronized at 1173-1273 K showed the best excellent wear resistance against the sand. As a results of corrosion test in 1 M $H_2$$SO_4$ solution, $Fe_2$B formed on the matrix alloy exhibited higher corrosion resistance than FeB.

Fe-Ni-Cu 합금도금을 위한 Fe-Ni-Cu-S-H2O 용액의 열역학적 상의 안정도 (Thermodynamic Phase Equilibrium of Aqueous Fe-Ni-Cu-S-H2O Solution for Fe-Ni-Cu Alloy Plating)

  • 백열;한상선;최용
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.123.2-123.2
    • /
    • 2017
  • Fe-Ni-Cu 합금 전주를 위하여 황화물 용액에의 상의 열역학적 안정도를 작성하고 전주 조건을 선정하였다. $Fe-Ni-Cu-S-H_2O$ 용액의 열역학적 상의 안정도를 전산모사하기 위한 프로그램은 C#으로 작성하였다. JANAF 자료를 근거한 적정 전주 조건은 $130mA/cm^2$, $50{\sim}55^{\circ}C$, pH 2.4 이었다. XRF을 이용한 Fe-Ni-Cu의 합금 도막의 평균 조성은 Fe-42Ni-1Cu [wt.%] 이었다, 전류밀도가 낮아질수록 Ni과 Cu량은 증가하였다. 구리 농도가 증가하면 표면조도는 60 nm로 변화하였다.

  • PDF

Ni-22Cr-18Fe-9Mo계 ODS 합금의 미세조직 및 고온인장 특성 평가 (Microstructural Evaluation and High Temperature Mechanical Properties of Ni-22Cr-18Fe-9Mo ODS Alloy)

  • 정석환;강석훈;한창희;김태규;김도향;장진성
    • 한국분말재료학회지
    • /
    • 제18권5호
    • /
    • pp.456-462
    • /
    • 2011
  • Yttrium oxide is one of the most thermo-dynamically stable materials, so that it is generally used as a dispersoid in many kinds of dispersion strengthed alloys. In this study, a nickel-base superalloy is strengthened by dispersion of yttrium oxide particles. Elemental powders with the composition of Ni-22Cr-18Fe-9Mo were mechanically alloyed(M.A.) with 0.6 wt% $Y_2O_3$. The MA powders were then HIP(hot isotactic press)ed and hot rolled. Most oxide particles in Ni-22Cr-18Fe-9Mo base ODS alloy were found to be Y-Ti-O type. The oxide particles were uniformly dispersed in the matrix and also on the grain boundaries. Tensile test results show that the yield strength and ultimate tensile strength of ODS alloy specimens were 1.2~1.7 times higher than those of the conventional $Hastelloy^{TM}$ X(R), which has the same chemical compositions with ODS alloy specimens except the oxide particles.

마이크로부품 및 금형 제조를 위한 Fe계 합금전주도금에 관한 연구 (Study on the Electroforming of Fe alloy using UV-LIGA)

  • 손성호;박성철;이홍기;김현종;이호년;이민형;이원식
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2011년도 춘계학술대회 및 Fine pattern PCB 표면 처리 기술 워크샵
    • /
    • pp.49-49
    • /
    • 2011
  • 본 연구에서는 Fe계 합금전주도금 미세부품 및 금형 제조에 사용되는 전주용 Fe계 합금도금 기술을 개발을 위해 Fe-Ni 및 Fe-Ni-W 합금 전기도금에 대한 속도론적 고찰을 통해 Fe-Ni 합금도금층 내의 Fe과 Ni, Fe-Ni-W 합금 도금층 내의 Fe, Ni, W 성분 함유량에 대한 각각의 공정 제어인자를 규명하였다. Fe-Ni합금과 Fe-Ni-W합금도금층 구현에 있어 합금도금액의 합성, 최적 전류밀도 범위 도출, 합금도금층의 표면거칠기 및 경도 확보를 위한 공정조건 확립 등을 수행하였고, 전주(electroforming)를 이용하여 마이크로 기어 및 금형을 제조하였다.

  • PDF

1N 염산 용액에서 Fe-Cr-Ni-W 합금의 양분극 거동에 관한 연구 (The Anodicc PolarizationBehavior of Fe-Cr-Ni-W alloy in 1N HCI Solution)

  • 윤재돈;강성군
    • 한국표면공학회지
    • /
    • 제21권4호
    • /
    • pp.176-182
    • /
    • 1988
  • Effects of Cr, Ni and W on the anodic polarization behavior were investigated for Fe-Cr-Ni-W alloys in deaerated 1N HCI solution. Surface films formed on the polarization were analysed using AES, SEM and EDAX. A higerconcentration of tungten was found in the surface oxide film compared to the matrix. It played an importanet role on incresing the stability of the passive film. The presence of an adequate amount of Cr was essential to increase the pitting resistance of the alloys in acid chloride media. Under 12 wt%cr,alloys containing 6wt%W did not exhidit any passivity at all. The main role of Ni was to control the microstructure rather than to modify the corrosion resistance. In 23 cr-14Ni-^W alloy, the duplex microstructure of ferrite($\delta$-phase) in an austenic matrix was developed. The reson why proferred pitting appeared in austenite and ferrite/austenite interface was that ferrite had more amount of Cr and W than austenite.

  • PDF

Fe-Ni-Co 코바 합금의 고온변형거동에 미치는 합금원소(Mn, Mo, B) 첨가의 영향 (Effect of Alloying Elements(Mn, Mo, B) on the High Temperature Deformation Behavior of Low Thermal Expansion Fe-Ni-Co Alloy)

  • 이기안;윤애천;박중철;남궁정;김문철
    • 소성∙가공
    • /
    • 제17권4호
    • /
    • pp.240-248
    • /
    • 2008
  • The effect of alloying elements(Mn, S, Mo, B) on the high temperature deformation behavior of Fe-29%Ni-17%Co (Kovar) alloy were investigated. And the effect of high temperature oxidation on the hot ductility was also studied. The hot ductility of Kovar alloy was drastically increased with the addition of Mn and lowering of S content. It has been found that the brittle intergranular fracture at high temperature cracking is closely associated with the FeS sulfide along the grain boundary. When Mn was added, the type of sulfide was changed to MnS from FeS and ductile intergranular fracture and transgranular fracture were promoted. The formation of oxide layer was found to have minimized the hot ductility of the Kovar alloy significantly. Grain boundary micro-cracks in the internal oxide region were noted following deformation due to high temperature, one of which acting as a notch that caused the poor hot workability of the oxidized specimen. The addition of Mo to the Kovar alloy could also retard the decrease in the hot ductility of the oxidized specimen through the prevention of notching due to internal oxidation. Hot ductility was remarkably improved by the addition of Boron. The improvement of hot ductility results from the grain boundary migration mainly due to the dynamic recrystallization at lower temperature range ($900{\sim}1000^{\circ}C$).

Ag - CoFe 합금박막의 자기저항 및 강자성 상하지층의 효과 (Effect of Fcrromagnetic Layer and Magnetoresistance Behavior of Co-Evaporated Ag-CoFe Nano-Granular Alloy Films)

  • 김용혁;이성래
    • 한국자기학회지
    • /
    • 제7권6호
    • /
    • pp.308-313
    • /
    • 1997
  • 조성과 강자성 상하지층이 CoFe-Ag 나노입상 합금박막의 거대자기저항과 포화자기장에 미치는 효과에 대하여 연구하였다. 3000 .angs. 두께의 ( $Co_{92}$Fe$_{8}$)$_{31}$Ag$_{69}$ 합금박막에서 최대 자기저항 25.7%를 얻었고, 그 때 포화자장은 2.1 kOe 이었다. 100 .angs. 두께의 박막은 자기저항비가 1.2%이고 포화자장은 5.2 kOe 이었다. 200 .angs. 두께의 합금 박막에 100 .angs. Fe를 상하지층으로 증착하였을 때 자기저항은 9.5 %dptj 11 %로 증가하였고 포화자기장은 2.8 kOe에서 1.8 kOe로 개선되었다. 300 .angs. 이하의 합금박막에 강자성 상하지층의 피복은 교환결합에 의하여 합금박막의 포화자기장을 감소시키는 효과가 있었다. 강자성 상하지층에 의한 자기저항의 증가는 표면에서의 전도전자의 스핀 전도산란의 감소와 계면저항에 의한 전류새흐름의 감소로 기인되는 것으로 보인다. 자기저항의 증가 효과는 합금박막의 두께가 약 300 .angs. 이하에서 나타났다. 교환결합 강자성체인 NiFe 그리고 Fe 중에서 Fe가 교환결합에 의한 포화자기장 감소에 좀더 효과적이었다.

  • PDF

Oxidation Study on the Fabrication of Fe-36Ni Oxide Powder from Its Scrap

  • Yun, Jung Yeul;Park, Man Ho;Yang, Sangsun;Lee, Dong-Won;Wang, Jei-Pil
    • 한국분말재료학회지
    • /
    • 제20권1호
    • /
    • pp.48-52
    • /
    • 2013
  • A study of oxidation kinetic of Fe-36Ni alloy has been investigated using thermogravimetric apparatus (TGA) in an attempt to define the basic mechanism over a range of temperature of 400 to $1000^{\circ}C$ and finally to fabricate its powder. The oxidation rate was increased with increasing temperature and oxidation behavior of the alloy followed a parabolic rate law at elevated temperature. Temperature dependence of the reaction rate was determined with Arrhenius-type equation and activation energy was calculated to be 106.49 kJ/mol. Based on the kinetic data and micro-structure examination, oxidation mechanism was revealed that iron ions and electrons might migrate outward along grain boundaries and oxygen anion diffused inward through a spinel structure, $(Ni,Fe)_3O_4$.