• Title/Summary/Keyword: Fe-Ni

Search Result 2,499, Processing Time 0.038 seconds

Anomalous Exchange Bias of the Top and Bottom NiFe Layers in NiFe/FeMn/NiFe Based Spin Valve Multilayers (NiFe/FeMn/NiFe 스핀밸브 구조의 다층박막에서 상 하부 NiFe 두께에 따른 교환바이어스 조사)

  • S.M. Yoon;J.J. Lim;V.K. Sankar;Kim, C.G.;Kim, C.O.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.212-212
    • /
    • 2003
  • Many of the spin valve multilayer structures with FeMn as antiferromagnetic layer consist of a NiFe/FeMn/NiFe trilayer where the bottom NiFe layer is the seed layer to facilitate the growth of (111) gama-FeMn antiferromagnetic phase and the top NiFe layer forms the pinned layer[1], In this study, exchange bias of bottom NiFe layer has been investigated as functions of thicknesses of top and bottom NiFe in NiFe/FeMn/NiFe, prepared by rf magnetron sputtering, MH-loop was measured by vibration sample magnetometer (VSM). Two hysteresis loops are corresponded to bottom and top layers, similar to reported loops in spin valve structure. Exchange bias of bottom NiFe could be induced by the interfacial coupling between bottom NiFe and FeMn. But those coupling are strongly dependent on the top and bottom NiFe thicknesses, revealing anomalous character ul exchange bias of bottom NiFe layer.

  • PDF

Exchange Bias Field and Coercivity of [NiFe/NiFeCuMo/NiFe]/FeMn Multilayers ([NiFe/NiFeCuMo/NiFe]/FeMn 다층박막의 교환결합력과 보자력에 관한 특성 연구)

  • Choi, Jong-Gu;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.4
    • /
    • pp.132-135
    • /
    • 2011
  • The exchange bias field ($H_{EX}$) and the coercivity ($H_C$) variation and change depending on the thickness of intermediately super-soft magnetic NiFeCuMo layer with different thickness of the bottom NiFe layer were investigated. The $H_{EX}$ of triple pinned NiFe(4 nm)/NiFeCuMo($t_{NiFeCuMo}$= 1 nm)/NiFe(4 nm)/FeMn multilayer has the maximum value more less than one of single pinned NiFe(8 nm)/FeMn layer. If NiFeCuMo layer is inserted each into between the pinned and free NiFe layers, we can be used as GMR-SV device for a bio-sensor that has improved magnetic sensitivity.

Enhancement of Crystallinity and Exchange Bias Field in NiFe/FeMn/NiFe Trilayer with Si Buffer Layer Fabricated by Ion-Beam Deposition (이온 빔 증착법으로 제작한 NiFe/FeMn/NiFe 3층박막의 버퍼층 Si에 따른 결정성 및 교환결합세기 향상)

  • Kim, Bo-Kyung;Kim, Ji-Hoon;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.132-136
    • /
    • 2002
  • Enhancement of crystallinity and exchange bias characteristics for NiFe/FeMn/NiFe trilayer with Si buffer layer fabricated by ion-beam deposition were examined. A Si buffer layer promoted (111) texture of fcc crystallities in the initial growth region of NiFe layer deposited on it. FeMn layers deposited on Si/NiFe bilayer exhibited excellent (111) crystal texture. The antiferromagnetic FeMn layer between top and bottom NiFe films with the buffer Si 50 ${\AA}$-thick induced a large exchange coupling field Hex with a different dependence. It was found that H$\sub$ex/ of the bottom and top NiFe films with Si buffer layer revealed large value of about 110 Oe and 300 Oe, respectively. In the comparison of two Ta and Si buffer layers, the NiFe/FeMn/NiFe trilayer with Si could possess larger exchange coupling field and higher crystallinity.

Magnetic Characteristics and Annealing Effects of $NiFe/FeMn/NiFe/CoFe/Al_2O_3/CoFe/NiFe$Spin Tunneling Junctions ($NiFe/FeMn/NiFe/CoFe/Al_2O_3/CoFe/NiFe$ 스핀 터널링 접합의 자기적 특성과 열처리 효과)

  • 최연봉;박승영;강재구;조순철
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.6
    • /
    • pp.296-300
    • /
    • 1999
  • Cross-shape structures of spin tunneling junctions were fabricated using DC magnetron sputtering and metal masks. The film structures were $substrate/Ta/NiFe/FeMn/NiFe/CoFe/Al_2O_3/CoFe/NiFe$ and $substrate/Ta/NiFe/CoFe/ Al_2O_3/CoFe/NiFe/FeMn/NiFe$. Fabrication conditions of insulating layer ($Al_2O_3$) and thickness and sputtering power of each film layer were varied, and maximum magnetoresistance ratio of 24.3 % was obtained. Magnetic characteristic variations in the above mentioned two structures and two types of substrates (Corning glass 7059 and Si(111)) were compared. Annealing of the junctions was performed to find out magnetic characteristic variations expected from the device fabrication. Magneoresistance Ratio were observed to maintain as-deposited value up to 150 $^{\circ}C$ annealing and then to drop rapidly after 180 $^{\circ}C$ annealing.

  • PDF

Effects of NiFeCo of NiFe Insertion Layers on the Giant Magnetoresistance Behavior of Ni/Cu Artificial Superlattice (Ni/Cu 인공초격자에서 NiFeCo 및 NiFe 계면 삽입층이 거대자기저항 거동에 미치는 영향)

  • 송용진;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.6
    • /
    • pp.963-967
    • /
    • 1995
  • Ultra thin layers of NiFeCo or NiFe were inserted at the interfaces of Ni and Cu to form a multilayer structure. In case of inserting a NiFe layer, the magnetoresistance was about 6%, the saturation magnetic field was 50 Oe and the hysteresis of R-H (resistance-magnetic field) was very small. In case of inserting a NiFeCo layer, the magnetoresistance increased to about 7% but the saturation magnetic field and hysteresis were also increased. The increase of the output under biased magnetic field was much larger in case of inserting a NiFe layer because of relatively smaller hysteresis in R-H behavior.

  • PDF

A Study on the Magnetic Properties in Ni-Fe-Co/Cu/Ni-Fe-Co/Fe-Mn Multilayered Thin Films for Magnetoresistive Head (자기저항 헤드용 Ni-Fe-Co/Cu/Ni-Fe-Co/Fe-Mn 다층박막의 자기적 성질에 관한 연구)

  • 배성태;신경호;김진영
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.1
    • /
    • pp.67-76
    • /
    • 1995
  • 자기저항헤드용 Ni-Fe-Co/Cu/Ni-Fe-Co/Fe-Mn 다층박막에서 자기적 성질과 전기적 성질에 관하여 조사하였다. 저 포화자계에서 고 자기저항을 나타내는 스핀 밸브형 다층박막을 제작하기 위하여 Borond이 도핑된 p-type Si(100)기판위에 Ni-Fe-Co 단층박막과 Si/Ni-Fe-Co/Cu/Ni-FeCo, Si/Ni-Fe-Co/Fe-Mn 구조의 다층막을 제작하여 자기적 특성을 조사하였다. Ni-Fe-Co 단층박막의 자기적 특성은 고정된 아르곤 분압에서 박막의 두께 등에 의존성이 있는 것으로 나타났다. 또한 Si/Ni-Fe-Co($70AA$)/Fe-Mn 구조에서 Ni-Fe-Co와 Fe-Mn 계면에서의 두 자성층의 이방성 차이에 의해서 발생되어지는 교환자기이방성이 존재하였으며, 교환자기이방성자계값은 Fe-Mn 두께가 $150\AA$일 때 가장 큰 값을 나타내었다. Ni-Fe-Co texture와 교환자기이방성자계값은 Fe-Mn 두께가 $150\AA$일 때 가장 큰 값을 나타내었다. Ni-Fe-Co texture와 교환자기이방성자계값의 의존성을 알아보기 위하여 Ti, Cu를 바닥층으로 사용하였다. Ti을 바닥층으로 사용하였을 경우, 교환자기이방성자계값은 23.5 Oe 정도의 가장 큰 값을 나타내었다. XRD 분석결과, Ti 바닥층이 Cu 바닥층이나, 바닥층이 없는 경우와 비교하여 성막된 Ni-Fe-Co 자성층의 강한 fcc(111) texture를 형성하는 것으로 나타났다. 각각의 단층박막과 다층박막에서의 자기적 특성을 측정한 후, Si/Ti($50\AA$)/Ni-Fe-Co($70\AA$)/Cu($23\AA$)/Ni-Fe-Co($70\AA$)/Fe-Mn(150$\AA$)/Cu(50$\AA$)의 스핀밸브구조를 갖는 다층박막을 제작하였으며, 11 Oe의 낮은 포화자계값에서 4.1%의 고 자기저항값을 얻을 수 있었다.

  • PDF

Magneto resistance in NiO/NiFe/Cu/NiFe spin-valve Sandwiches (NiO/NiFe/Cu/NiFe 스핀-밸브 샌드위치의 자기저항 특성)

  • 김재욱
    • Electrical & Electronic Materials
    • /
    • v.10 no.10
    • /
    • pp.1016-1021
    • /
    • 1997
  • Magneto resistance properties in spin-valve sandwiches with various thickness of nanmagnetic layer in contact with the ferromagnetic NiFe film were investigated. The NiFe layer in contact with the NiO film was pinned by strongly exchange-biased coupling and the free NiFe layer at the film surface induced a sharp change in the magnetoresistance at -5~15Oe due to small coercivity. The NiO/NiFe/Cu/NiFe film showed a magnetoresistance ratio in the range of 2.3~2.9% and a field sensitivity above 2.2%/Oe with various of nonmagnetic layer. The NiO/NiFe/Cu/NiFe film of the field sensitivity above 2.2%/Oe suggests stang possibility of magnetic sensor matter.

  • PDF

Effect of $Ar/H_2$ Mixed Gas Sputtering on the Exchange Coupling of NiFe/WeMn Interface (스퍼터링 가스내 수소첨가에 의한 NiFe/FeMn의 교환결합력 향상에 관한 연구)

  • 이성래;박병준;김성훈;김영근
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.4
    • /
    • pp.146-150
    • /
    • 2001
  • The effect of H$_2$ content in Ar sputtering gas on exchange coupling field(H$_{ex}$) for NiFe/FeMn interface was studied. When NiFe layer of Si(100)/Ta(50 $\AA$)/NiFe(60 $\AA$)/FeMn(250 $\AA$)Ta(50 $\AA$) was deposited at 8% H$_2$ in sputtering gas, the maximum exchange coupling field(H$_{ex}$) and minimum coercivity(H$_{c}$) were obtained. When Si(100)/Ta(50 $\AA$)/NiFe(60 $\AA$)/FeMn(250 $\AA$)/NiFe(70 $\AA$)/Ta(50 $\AA$) was deposited at 5% H$_2$ in sputtering gas, the maximum exchange coupling field(H$_{ex}$) of 148 Oe was obtained. The (111) preferred orientation and grain size of underlayer NiFe were increased and the internal stress was reduced by H$_2$ in sputtering gas. And the (111) preferred orientation and grain size of FeMn layer were also increased.d.ased.

  • PDF

Effect of NiO spin switching on the Fe film magnetic anisotropy in epitaxially grown Fe/NiO/Ag(001) and Fe/NiO/MgO(001) systems

  • Kim, Won-Dong;Park, Ju-Sang;Hwang, Chan-Yong;Wu, J.;Qiu, Z.Q.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.366-366
    • /
    • 2010
  • Single crystalline Fe/NiO bilayers were epitaxially grown on Ag(001) and on MgO(001), and investigated by Low Energy Electron Diffraction (LEED), Magneto-Optic Kerr Effect (MOKE), and X-ray Magnetic Linear Dichorism (XMLD). We find that while the Fe film has an in-plane magnetization in both Fe/NiO/Ag(001) and Fe/NiO/MgO(001) systems, the NiO spins switch from out-of-plane direction in Fe/NiO/MgO(001) to in-plane direction in Fe/NiO/Ag(001). These two different NiO spin orientations generate remarkable different effects that the NiO induced magnetic anisotropy in the Fe film is much greater in Fe/NiO/Ag(001) than in Fe/NiO/MgO(001). XMLD measurement shows that the much greater magnetic anisotropy in Fe/NiO/Ag(001) is due to a 90o-coupling between the in-plane NiO spins and the in-plane Fe spins which causes a switching of the NiO spins during the Fe magnetization reversal.

  • PDF