• Title/Summary/Keyword: Fe-Mn-Si

Search Result 456, Processing Time 0.023 seconds

The Effects of Mn and Cr Additions on the Microstructure of A356 Alloys Containing Impure Fe (불순 Fe를 함유한 A356 주조합금에서 미세조직 형성에 관한 Mn과 Cr의 효과)

  • Han, Sang-Won
    • Journal of Korea Foundry Society
    • /
    • v.25 no.3
    • /
    • pp.128-133
    • /
    • 2005
  • The effects of Mn and Cr on the crystallization behaviors of Fe-bearing intennetallics in A356 alloy were studied. Coarse and acicular ${\beta}-Al_{5}$FeSi phase in A356-0.20wt.%Fe alloy was modified into small ${\alpha}$-Al(Fe,Mn)Si and ${\alpha}$-Al(Fe,Cr)Si phases in response to Mn and Cr addition, respectively. Increasing of Mn addition amount elevates the crystallizing temperature of ${\alpha}$-Al(Fe,Mn)Si and the Mn/Fe ratio in the ${\alpha}$-Al(Fe,Mn)Si. Cr is more effective to modify ${\beta}-Al_{5}$FeSi in comparison with Mn. ${\alpha}$-Al(Fe,Mn)Si phase had BCC/SC dual structure.

Enhancement of Crystallinity and Exchange Bias Field in NiFe/FeMn/NiFe Trilayer with Si Buffer Layer Fabricated by Ion-Beam Deposition (이온 빔 증착법으로 제작한 NiFe/FeMn/NiFe 3층박막의 버퍼층 Si에 따른 결정성 및 교환결합세기 향상)

  • Kim, Bo-Kyung;Kim, Ji-Hoon;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.132-136
    • /
    • 2002
  • Enhancement of crystallinity and exchange bias characteristics for NiFe/FeMn/NiFe trilayer with Si buffer layer fabricated by ion-beam deposition were examined. A Si buffer layer promoted (111) texture of fcc crystallities in the initial growth region of NiFe layer deposited on it. FeMn layers deposited on Si/NiFe bilayer exhibited excellent (111) crystal texture. The antiferromagnetic FeMn layer between top and bottom NiFe films with the buffer Si 50 ${\AA}$-thick induced a large exchange coupling field Hex with a different dependence. It was found that H$\sub$ex/ of the bottom and top NiFe films with Si buffer layer revealed large value of about 110 Oe and 300 Oe, respectively. In the comparison of two Ta and Si buffer layers, the NiFe/FeMn/NiFe trilayer with Si could possess larger exchange coupling field and higher crystallinity.

A study on the exchange anisotropy of Ni-Fe/Co-Fe/Mn-Ir/Cu/buffer/Si multialyers (Ni-Fe/Co-Fe/Mn-Ir/Cu/buffer/Si 다층박막의 교환이방성에 관한 연구)

  • 윤성용;노재철;전동민;임흥순;서수정
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.36-41
    • /
    • 2000
  • We studied the exchange anisotropy of Ni-Fe/Co-Fe/Mn-Ir/Cu/buffer/Si multilayers using D.C magnetron sputtering technique. Generally, Ni-Fe/Mn-Ir/buffer(Cu)/Si multilayers cannot pin the ferromagnetic layer for the lower exchange biased field. We got $H_{ex}$ ex/ increased by two times, after using Cu/Ta as buffer layer to get larger grain size of Mn-Ir layer and inserting very thin Co-Fe layer between the Ni-Fe layer and the Mn-Ir layer to get improved grain-to-grain epitaxy relation at the interface between Ni-Fe layer and Mn-Ir layer. The variation of $H_{ex}$ by thickness of Mn-Ir layer in ferromagnete/Mn-Ir/buffer/Si multilayers is different to that in Mn-Ir/ferromagnete/buffer/Si multilayers, because the volume distribution of grain size of Mn-Ir layer and the exchange energy at the interface between the Mn-Ir and the ferromagnetic layers is different for stacking sequence.

  • PDF

Effect of Fe, Mn Content on the Castability in Al-9wt%Si-Mg System Alloys for High Elongation (고신율 금형주조용 Al-9wt%Si-Mg계 합금의 주조특성에 미치는 Fe, Mn함량의 영향)

  • Kim, Heon-Joo;Jeong, Chang-Yeol
    • Journal of Korea Foundry Society
    • /
    • v.33 no.6
    • /
    • pp.233-241
    • /
    • 2013
  • Effect of Fe and Mn contents on the castability of Al-9wt%Si-xMg-yFe-zMn alloy has been studied. The alloy was composed of ${\alpha}$-Al phase, Al+eutectic Si phase, ${\beta}$-Al5FeSi compound and chinese script ${\alpha}$-$Al_{15}(Mn,Fe)_3Si_2$ compound. ${\beta}$-$Al_5FeSi$ and ${\alpha}$-$Al_{15}(Mn,Fe)_3Si_2$ compounds assumed to effect the fluidity and shrinkage behaviors of the alloy during solidification due to the crystallization of ${\alpha}$-$Al_{15}(Fe,Mn)_3Si_2$ and ${\beta}$-$Al_5FeSi$ compounds above eutectic temperature. As Fe and Mn contents of Al-9wt%Si-0.3wt%Mg system alloy increased from 0.15wt% to 0.6wt% and from 0.3wt% to 0.7wt%, fluidity of the alloy decreased by 5.7% and 3.3%, respectively. And as Mg content of Al-9wt%Si-0.45wt%Fe-0.5wt%Mn system alloy increased from 0.3wt% to 0.4wt%, fluidity of the alloy decreased by 8.6%. When Fe content of the alloy increased from 0.15wt% to 0.6wt%, macro shrinkage ratio decreased from 6.1% to 4.1%, and micro shrinkage ratio increased from 0.04% to 0.24%. Similarly, Mn content of the alloy increased from 0.3wt% to 0.7wt%, macro shrinkage ratio decreased from 6.0% to 4.5% and micro shrinkage ratio increased from 0.12% to 0.18%. Judging from the castability of the alloy, Al-9wt%Si-0.3wt%Mg alloy with low content of Fe and Mn, 0.1wt% Fe and 0.3wt% Mn, is recommendable.

Effect of Fe, Mn Content on the Tensile Property of Al-4 wt%Mg-0.9 wt%Si Alloy System for High Pressure Die Casting (고압 금형 주조용 Al-4 wt%Mg-0.9 wt%Si계 합금의 인장특성에 미치는 Fe, Mn함량의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.33 no.3
    • /
    • pp.103-112
    • /
    • 2013
  • Effect of Fe and Mn contents on the tensile properties of Al-4 wt%Mg-0.9 wt%Si alloy system has been studied. Common phases of Al-4 wt%Mg-0.9 wt%Si alloy system were ${\alpha}$-Al, $Mg_2Si$, ${\alpha}-Al_{12}(Fe,Mn)_3Si$ and ${\beta}-Al_5FeSi$. As Fe content of Al-4 wt%Mg-0.9 wt%Si alloy system increased from 0.15 wt% to above 0.3 wt%, ${\beta}-Al_5FeSi$ compound appeared. When Mn content of the alloy increased from 0.3 wt% to 0.5 wt%, morphology of plate shaped ${\beta}-Al_5FeSi$ compound changed to chinese script ${\alpha}-Al_{12}(Fe,Mn)_3Si$. As Fe content of Al-4 wt%Mg-0.9 wt%Si-0.3 wt%Mn alloy increased from 0.15 wt% to 0.4 wt%, tensile strength of the as-cast alloy decreased from 191 MPa to 183 MPa and, elongation of the alloy also decreased from 8.0% to 6.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with low Mn/Fe ratio of the alloy. However, when Mn content of Al-4 wt%Mg-0.9 wt%Si-0.3 wt%Fe alloy increased from 0.3 wt% to 0.5 wt%, tensile strength of as-cast alloy increased from 181 MPa to 194 MPa and, elongation of the alloy increased from 6.8% to 7.0%. These improvements attribute to the morphology change from ${\beta}-Al_5FeSi$ phase to chinese script, ${\alpha}-Al_{15}(Fe,Mn)_3Si_2$ phase shape-modified from with high Mn/Fe ratio of the alloy.

Effect of Fe, Mn Content on the Castability of Al-4%Mg-0.9%Si Alloys for High Pressure Die Casting (고압 금형 주조용 Al-4%Mg-0.9%Si 합금의 주조특성에 미치는 Fe, Mn 함량의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.33 no.2
    • /
    • pp.55-62
    • /
    • 2013
  • Effect of Fe and Mn contents on the castability of Al-4wt%Mg-0.9wt%Si system alloy has been studied. According to the analysis of cooling curve for Al-4wt%Mg-0.9wt%Si-0.3wt%Fe-0.3/0.5wt%Mn alloy, ${\alpha}-Al_{15}(Fe,Mn)_3Si_2$ and ${\beta}-Al_5FeSi$ phases crystallized above eutectic temperature of $Mg_2Si$. Therefore, these phases affected both the fluidity and shrinkage behaviors of the alloy during solidification. As Fe and Mn contents of Al-4wt%Mg-0.9wt%Si system alloy increased from 0.1 wt% to 0.4 wt% and from 0.3 wt% to 0.5 wt% respectively, the fluidity of the alloy decreased by 26% and 33%. When Fe content of the alloy increased from 0.1 wt% to 0.4 wt%, 23% decrease of macro shrinkage and 19% increase of micro shrinkage appeared. Similarly, Mn content of the alloy increased from 0.3 wt% to 0.5 wt%, 11% decrease of macro shrinkage and 14% increase of micro shrinkage appeared. Judging from the castability of the alloy, Al-4wt%Mg-0.9wt%Si alloy with low content of Fe and Mn, 0.1 wt% Fe and 0.3 wt% Mn, is recommendable.

Effect of Fe and Mn Contents on the Tensile Property of Al-9%Si-0.3%Mg Alloy for High Pressure Die Casting (고압 금형주조용 Al-9%Si-0.3%Mg 합금의 Fe, Mn 함량이 인장특성에 미치는 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.31 no.1
    • /
    • pp.18-25
    • /
    • 2011
  • Effect of Fe and Mn contents on the tensile properties has been studied in Al-9wt%Si-0.3wt%Mg alloy. As Fe content of Al-9wt%Si-0.3wt%Mg-0.5wt%Mn alloy increased from 0.15wt% to 0.45wt%, tensile strength of as-cast alloy decreased from 192 MPa to 174 MPa, and elongation of the alloy also decreased from 4.8% to 4.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with high Fe/Mn ratio of the alloy. However when Mn content of Al-9wt%Si-0.3wt%Mg-0.45wt%Fe alloy increased from 0.3wt% to 0.5wt%, tensile strength of T6 aged alloy increased from 265 MPa to 275 MPa, and elongation of the alloy increased from 2.3% to 3.6%. These improvements attribute to chinese script, ${\alpha}-Al_{15}(Mn,Fe)_3Si_2$ phase shape-modified from ${\beta}-Al_5FeSi$ phase with low Fe/Mn ratio of the alloy.

Phosphate removal using novel combined Fe-Mn-Si oxide adsorbent (Fe-Mn-Si 산화물을 이용한 인제거 흡착연구)

  • Maeng, Minsoo;Lee, Haegyun;Dockko, Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.631-639
    • /
    • 2013
  • The removal of phosphate from surface water is becoming increasingly vital to prevent problems such as eutrophication, particularly near urban areas. Recent requirements to reduce high concentrations of phosphate rely on physicochemical methods and adsorbents that must be effective even under strict conditions. The phosphate removal efficiencies of two adsorbents, Fe-Mn-Si oxide and Fe-Mn oxide, were investigated and the data used to compare kinetics and isotherm models. The maximum adsorption capacities of the two adsorbents were 47.8 and 35.5 mg-$PO{_4}^{3-}/g$, respectively. Adsorptions in both cases were highly pH dependent; i.e., when the pH increased from 3 to 9, the average adsorption capacities of the two adsorbents decreased approximately 32.7 % and 20.3 %, respectively. The Freundlich isotherm model fitted the adsorption of Fe-Mn-Si oxide more closely than did the Langmuir model. Additionally, anionic solutions decreased adsorption because of competition with the anions in the adsorbing phosphate. Although affected by the presence of competing anions or a humic substance, Fe-Mn-Si oxide has better adsorption capacity than Fe-Mn oxide.

Consolidation of p-type Fe(Mn)Si2 Thermoelectric Powder and Microstructure (P형 Fe(Mn)Si2 열전재료 분말의 성형 및 미세조직)

  • Shim, J.S.;Hong, S.J.;Chun, B.S.
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.345-351
    • /
    • 2008
  • The effects of the dopant (Mn) ratio on the microstructure and thermoelectric properties of $FeSi_2$ alloy were studied in this research. The alloy was fabricated by a combination process of ball milling and high pressure pressing. Structural behavior of the sintered bulks were systematically investigated by XRD, SEM, and optical microscopy. With increasing dopan (Mn) ratio, the density and ${\varepsilon}-FeSi$ phase of the sintered bulks increased and maximum density of 94% was obtained in the 0.07% Mn-doped alloy. The sintered bulks showed fine microstructure of ${\alpha}-Fe_{2}Si_{5}$, ${\varepsilon}-FeSi$ and ${\beta}-FeSi_2$ phase. The semiconducting phase of ${\beta}-FeSi_2$ was transformed from ${\alpha}-Fe_{2}Si_{5}+{\varepsilon}-FeSi$ phase by annealing.

Effects of Mn, Cr, and Sr Additions on the Microstructure and Tensile Properties of Al-7Si-0.4Mg-1Fe Casting Alloy (Al-7Si-0.4Mg-1Fe 주조합금의 미세조직과 인장성질에 미치는 Mn, Cr 및 Sr 첨가의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ha-Young;Cho, Jae-Ik;Jung, Chang-Yeol
    • Journal of Korea Foundry Society
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2009
  • The microstructure of Al-7Si-0.4Mg-1Fe alloy mainly consists of aluminum dendrites, Al-Si eutectics, and $Al_5FeSi$ needles. When Mn was added to the alloy, the substantial amount of $Al_5FeSi$ phase was changed into Al(Mn,Fe)Si, however the needle-like morphology was almost unchanged. Combined additions of Cr or Sr with Mn to the base alloy resulted in rod-like Al(Mn, Fe,Si)Si phase. The tensile properties of as-cast alloys were enhanced by the Mn addition, especially when it was added with Sr. The tensile properties after T6 heat treatment was a little improved with 0.7%Mn addition, but Cr or Sr additions with Mn didn't show any positive effect on the properties of heat-treated alloys.