• 제목/요약/키워드: Fe-Cr-Ni alloys

검색결과 88건 처리시간 0.024초

Fractured Surface Morphology and Mechanical Properties of Ni-Cr Based Alloys with Mo Content for Dental Applications

  • Kim, Hyun-Soo;Son, Mee-Kyoung;Choe, Han-Cheol
    • 한국표면공학회지
    • /
    • 제49권3호
    • /
    • pp.260-264
    • /
    • 2016
  • In this study, fractured surface morphology and mechanical properties of Ni-Cr-Mo alloys with various contents of Mo for dental material use have been evaluated by mechanical test. The alloys used were Ni-13Cr-xMo alloys with Mo contents of 4, 6, 8, and 10 wt.%, prepared by using a vacuum arc-melting furnace. Ni-13Cr-xMo alloys were used for mechanical test without heat treatment. The phase and microstructure of alloys using an X-ray diffraction (XRD) and optical microscopy (OM) were evaluated. To examine the mechanical properties of alloys according to microstructure changes, the tensile test and the hardness test were carried out using tensile tester. To understand the mechanism of Mo addition to Ni-Cr alloy on mechanical property, the morphology and fractured surfaces of alloys were investigated by field-emission scanning electron microscope (FE-SEM). As a result, 79Ni-13Cr-8Mo alloy was verified that the tensile strength and the hardness were better than others. Varying Mo content, the changes of microstructures of alloys were identified by OM and SEM and that of 79Ni-13Cr-8Mo alloy was proved fabricated well. Microstructures of alloys were changed depending on Mo content ratio. It has been observed that 8% alloy had the most suitable mechanical property for dental alloy.

Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si 합금의 고온 산화에 미치는 S의 영향 (Effect of Sulfur on the High-temperature Oxidation of Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si Alloys)

  • 이동복;이경환;배근수;조규철;정재옥;김민정
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.386-391
    • /
    • 2017
  • Two kinds of steels whose compositions were Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si-(0.009 or 0.35)S (wt.%) were centrifugally cast, and oxidized at $900^{\circ}C$ for 50-350 h in order to find the effect of sulfur on the high-temperature oxidation of Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si-(0.009 or 0.35)S (wt.%) alloys. These alloys formed oxide scales that consisted primarily of $Cr_2O_3$ as the major oxide and $Cr_2MnO_4$ as the minor one through preferential oxidation of Cr and Mn. They additionally formed $SiO_2$ particles around the scale/alloy interface as well as inside the matrices. The high affinity of Mn with S led to the formation of scattered MnS inclusions particularly in the 0.35S-containing cast alloy. Sulfur was harmful to the oxidation resistance, because it deteriorated the scale/alloy adherence so as to accerelate the adherence and compactness of the formed scales.

기계적 합금화법에 의한 Ti-Fe-X계 수소 저장합금의 제조에 관한 연구 (Development of Ti-Fe-X metal hydride electrode by mechanical alloying)

  • 하창진;이경섭
    • 한국재료학회지
    • /
    • 제5권1호
    • /
    • pp.112-122
    • /
    • 1995
  • Metal hydride alloys of TiFe based system have been produced by mechanical alloying(MA) method and their electrochemical characteristics have been evaluated for application for Ni/MH battery electrode. These alloys became amorphous after 36hrs ball milling and easily activated electrochemically. All MA amorphous alloys reached at the first charge/discharge cycle the maximum capacity which was 2-3 times higher than the crystalline state. But their cyclic lives were much inferior to the crystalline state. Alloying elements such as Ni, Co, Cr, Mo substituting Fe greatly improved the capacity and 180 mAh/g capacity was obtained in an alloy of TiFe_{0.6}Ni_{0.1}Co_{0.1}Cr_{0.1}Mo_{0.1}$.

  • PDF

Fe-Ni 인바합금의 자기적성질에 미치는 Mn, Cr 및 Co의 첨가효과 (Effects of Mn, Cr and Co on the Magnetic Properties of Fe-Ni Invar Alloys)

  • 이종현;김희중;강일구;김학신
    • 한국자기학회지
    • /
    • 제3권1호
    • /
    • pp.7-12
    • /
    • 1993
  • 저열팽창재료인 Fe-36%Ni 인바합금을 기본조성으로 하여 제3원소인 Mn, Cr, Co를 0-5wt% 범위에서 소량 첨가하고 자기적성질의 변화를 조사였다. 상온에서 $300^{\circ}C$까지의 온도에 따른 비자화의 변화는 조성에 따라 약간의 차이는 있지만 5wt%Co를 제외하고 상온으로 부터 큐리온도 직 하인 $250^{\circ}C$까지 온도상승에 따라 지바화가 매우 빠르게 감소하고, 첨가원소에 따른 비자화의 온도의존성이 온도의 3/2승항과 2승항을 혼합한 형태로 나타나는 인바합금 특유의 형상을 보인다. 상온에서 첨가원소에 따른 비자화, 큐리온도 및 보자력은 동일 함량으로 치환할 경우에 Co > Cr > Mn 의 순서로 높게 나타나지만, 5wt%Co의 경우에 급증하는 현상은 강자성 $\gamma$상과 반강자성 $\gamma$상이 혼재하는 인바효과가 강자성 $\alpha$ 상이 생성됨에 따라 사라지기 때문이었다.

  • PDF

Electrochemical Behavior and Biocompatibility of Co-Cr Dental Alloys

  • Kang, Jung-In;Yoon, Jun-Bin;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 춘계학술대회 논문집
    • /
    • pp.107-107
    • /
    • 2015
  • In order to investigate electrochemical behavior and biocompatibility of Co-Cr dental alloy by electrochemical corrosion test and MTT assay, the xCo-25Cr-yW-zNi alloys were used in this study. Samples of Co-Cr-W-Ni alloys were manufactured using arc melting furnace. The microstructure of the alloys was examined by optical microscopy (OM), Field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), MTT assay, and corrosion test. Corrosion resistance increased slightly as cobalt (Co) content increased. And bioactivity was concerned with nickel (Ni) and tungsten (W). Biocompatibility of Co-Cr alloy depended on Ni and W contents.

  • PDF

고온 리튬용융염에서 Ni 200 및 Ni-base 합금의 부식거동 (Corrosion Behavior of Ni 200 and Ni-base Alloys in Hot Lithium Molten salt)

  • 조수행;임종호;윤기석;박성원
    • 한국재료학회지
    • /
    • 제14권4호
    • /
    • pp.251-259
    • /
    • 2004
  • In the development of the advanced spent fuel management process based on the molten salt technology, it is essential to choose the optimum material for the process equipment handling molten salt. Corrosion behavior of Ni 200 and Ni-base alloys in molten salt of LiCl-$Li_2$O under oxidation atmosphere was investigated in the temperature range of $650~800^{\circ}C$ for 24~312 hrs. The order of corrosion rate was Ni 200 > Inconel 690 > Inconel 601 > Inconel 600. Inconel 600 alloy showed the highest corrosion resistance among the examined alloys, but Ni 200 exhibited the highest corrosion rate. Corrosion products of Inconel 600 and Inconel 601 were $Cr_2$$O_3$ and $NiFe_2$$O_4$. In case of Inconel 690, a single layer of $CrO_2$$O_3$ was formed in the early stage of corrosion and an outer layer of $NiFe_2$O$_4$ and inner layer of $Cr_2$$O_3$ were formed with increase of corrosion time. Inconel 600 showed local corrosion behavior and Inconel 601, 690 showed uniform corrosion behavior.

[ $Ni_3Al-Fe-Cr$ ] Alloy Processed by Combined Mechanical Alloying - Reactive Synthesis

  • Orban, Radu L.;Lucaci, Mariana
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1316-1317
    • /
    • 2006
  • The paper investigates the possibility to avoid extrinsic embrittlement of $Ni_3Al$, also increasing the high temperature strength, by alloying with both Fe - of a high strengthening effect and Cr - able to remove a part of diffused oxygen along the grain boundaries. As Cr homogenization in $Ni_3Al$ is difficult because of its low diffusion coefficient, for its improving a mechanical alloying (MA) step before the compound synthesis by Self-propagating High-temperature Synthesis (SHS) was adopted. The obtained better homogenization resulted in higher mechanical resistance and deformability than of the unalloyed $Ni_3A/Ni_3Al$ alloys of the same composition obtained without MA step.

  • PDF

선택적 레이저 용융법으로 제조된 CoCrFeMnNi계 고엔트로피합금의 미세조직 및 기계적 물성 연구 동향 (Microstructure and Mechanical Properties of CoCrFeMnNi-type High-entropy Alloy Fabricated by Selective Laser Melting: A Review)

  • 박정민
    • 한국분말재료학회지
    • /
    • 제29권2호
    • /
    • pp.132-151
    • /
    • 2022
  • The CoCrFeMnNi high-entropy alloy (HEA), which is the most widely known HEA with a single face-centered cubic structure, has attracted significant academic attention over the past decade owing to its outstanding multifunctional performance. Recent studies have suggested that CoCrFeMnNi-type HEAs exhibit excellent printability for selective laser melting (SLM) under a wide range of process conditions. Moreover, it has been suggested that SLM can not only provide great topological freedom of design but also exhibit excellent mechanical properties by overcoming the strength-ductility trade-off via producing a hierarchical heterogeneous microstructure. In this regard, the SLM-processed CoCrFeMnNi HEA has been extensively studied to comprehensively understand the mechanisms of microstructural evolution and resulting changes in mechanical properties. In this review, recent studies on CoCrFeMnNi-type HEAs produced using SLM are discussed with respect to process-induced microstructural evolution and the relationship between hierarchical heterogeneous microstructure and mechanical properties.

오스테나이트계 Fe-18Cr-10Mn-2Ni 합금의 연성-취성 천이 거동에 미치는 침입형 원소의 영향 (Effect of Interstitial Elements on Ductile-Brittle Transition Behavior of Austenitic Fe-18Cr-10Mn-2Ni Alloys)

  • 황병철
    • 한국재료학회지
    • /
    • 제23권11호
    • /
    • pp.649-654
    • /
    • 2013
  • The effect of interstitial elements on the ductile-brittle transition behavior of austenitic Fe-18Cr-10Mn-2Ni alloys with different nitrogen and carbon contents was investigated in this study. All the alloys exhibited ductile-brittle transition behavior because of unusual low-temperature brittle fracture, even though they have a faced-centered cubic structure. With the same interstitial content, the combined addition of nitrogen and carbon, compared to the sole addition of nitrogen, improved the low-temperature toughness and thus decreased the ductile-brittle transition temperature (DBTT) because this combined addition effectively enhances the metallic component of the interatomic bonds and is accompanied by good plasticity and toughness due to the increased free electron concentration. The increase in carbon content or of the carbon-to-nitrogen ratio, however, could increase the DBTT since either of these causes the occurrence of intergranular fracture that lead to the deterioration of the toughness at low temperatures. The secondary ion mass spectroscopy analysis results for the observation of carbon and nitrogen distributions confirms that the carbon and nitrogen atoms were significantly segregated to the austenite grain boundaries and then caused grain boundary embrittlement. In order to successfully develop austenitic Fe-Cr-Mn alloys for low-temperature application, therefore, more systematic study is required to determine the optimum content and ratio of carbon and nitrogen in terms of free electron concentration and grain boundary embrittlement.

CORROSION BEHAVIOR OF NI-BASE ALLOYS IN SUPERCRITICAL WATER

  • Zhang, Qiang;Tang, Rui;Li, Cong;Luo, Xin;Long, Chongsheng;Yin, Kaiju
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.107-112
    • /
    • 2009
  • Corrosion of nickel-base alloys (Hastelloy C-276, Inconel 625, and Inconel X-750) in $500^{\circ}C$, 25MPa supercritical water (with 10 wppb oxygen) was investigated to evaluate the suitability of these alloys for use in supercritical water reactors. Oxide scales formed on the samples were characterized by gravimetry, scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results indicate that, during the 1000h exposure, a dense spinel oxide layer, mainly consisting of a fine Cr-rich inner layer ($NiCr_{2}O_{4}$) underneath a coarse Fe-rich outer layer ($NiFe_{2}O_{4}$), developed on each alloy. Besides general corrosion, nodular corrosion occurred on alloy 625 possibly resulting from local attack of ${\gamma}$" clusters in the matrix. The mass gains for all alloys were small, while alloy X -750 exhibited the highest oxidation rate, probably due to the absence of Mo.