• Title/Summary/Keyword: Fe-Co alloys

Search Result 209, Processing Time 0.058 seconds

Texture Study in HDDR-treated Nd-Fe-B-type Particles

  • Kim, Jung-Hwan;Kwon, H.W.
    • Journal of Magnetics
    • /
    • v.10 no.4
    • /
    • pp.152-156
    • /
    • 2005
  • Effects of the disproportionating hydrogen pressure and alloy composition on the texture in the HDDR-treated Nd-Fe-B particles were examined using the $Nd_{12.6}Fe_{81.4}B_6$ and $Nd_{12.6}Fe_{68.7}B_6Co_{11.0}Ga_{1.0}Zr_{0.l}$ alloys. Disproportionation kinetics of the $Nd_2Fe_{14}B$ phase in the Nd-Fe-B alloy was retarded significantly by the addition of Co, Ga and Zr. The retarded disproportionation kinetics of the $Nd_2Fe_{14}B$ phase ensured a wider processing win­dow in terms of disproportionating hydrogen pressure for achieving a texture in the HDDR-treated Nd-Fe-B alloy particles.

Microstructure and Mechanical Properties of CoCrFeMnNi-type High-entropy Alloy Fabricated by Selective Laser Melting: A Review (선택적 레이저 용융법으로 제조된 CoCrFeMnNi계 고엔트로피합금의 미세조직 및 기계적 물성 연구 동향)

  • Park, Jeong Min
    • Journal of Powder Materials
    • /
    • v.29 no.2
    • /
    • pp.132-151
    • /
    • 2022
  • The CoCrFeMnNi high-entropy alloy (HEA), which is the most widely known HEA with a single face-centered cubic structure, has attracted significant academic attention over the past decade owing to its outstanding multifunctional performance. Recent studies have suggested that CoCrFeMnNi-type HEAs exhibit excellent printability for selective laser melting (SLM) under a wide range of process conditions. Moreover, it has been suggested that SLM can not only provide great topological freedom of design but also exhibit excellent mechanical properties by overcoming the strength-ductility trade-off via producing a hierarchical heterogeneous microstructure. In this regard, the SLM-processed CoCrFeMnNi HEA has been extensively studied to comprehensively understand the mechanisms of microstructural evolution and resulting changes in mechanical properties. In this review, recent studies on CoCrFeMnNi-type HEAs produced using SLM are discussed with respect to process-induced microstructural evolution and the relationship between hierarchical heterogeneous microstructure and mechanical properties.

Analysis of Microstructure Evolution using Different Powder Metallurgy Process in Ti-X Alloy System (Ti-X계 합금의 분말야금 공정 차이에 따른 미세조직변화 분석)

  • Kwon, Hyeok-Gon;Kim, Doo-Hyeon;Gang, Min;Park, Ji-Hwan;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.1
    • /
    • pp.17-24
    • /
    • 2021
  • In this study, Ti-X (X=Mn, Fe, Mo) powder alloys were designed and manufactured by both powder metallurgy (PM) and metal powder injection molding (MIM) process to improve strength and formability compared to CP-Ti powder materials. It was found that the lamellar microstructure consisted of α and β phases was formed in PM-processed alloys. However, MIM-processed alloys showed not the lamellar microstucture but the equiaxed α + β microstructure. It was also revealed that the contents of X component and feedstock were not affected to microstructure evolution. The reason why different microstructure was appeared between PM-processed and MIM-processed alloys is not clear yet, but supposed to be the effect of intersticial elements such as C, H and N derived from feedstock during debinding process of MIM.

Electrochemical Charge and Discharge Characteristics of Zr-Based Laves Phase Hydrogen Storage Alloys (Zr계 라-베상 수소저장합금의 전기화학적 충·방전특성)

  • Lee, Jae-Myoung;Kim, Chan-Jung;Kim, Dai-Ryong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.5 no.2
    • /
    • pp.99-109
    • /
    • 1994
  • To develop high capacity hydrogen storage alloys for secondary Ni/MH batteries, electrochemical charge/discharge characteristics of $Zr_{1-x}Ti_xMn_{1-y}V_yNi_{1-z}M_z$ (M=Al,Co,Fe) alloys were investigated, in which $0.2{\leq}x{\leq}0.6$, $0.2{\leq}y{\leq}0.8$, $0.2{\leq}z{\leq}0.4$. With increasing Ti content(x) and/or decreasing V content(y), lattice constants and maximum theoretical capacities of the alloys were decreased and equilibrium pressure of hydrogen absorption were increased. Electrochemical discharge capacities were increased with increasing Ti content(x). Especially, the alloys of x= 0.4~0.6 showed better charge/discharge efficiencies than those of x<0.4. Discharge capacities of $Zr_{0.4}Ti_{0.6}Mn_{0.4}V_{0.6}Ni_{0.8}Fe_{0.2}$, $Zr_{0.4}Ti_{0.6}Mn_{0.4}V_{0.6}Ni_{0.8}Al_{0.2}$ and $Zr_{0.5}Ti_{0.5}Mn_{0.4}V_{0.6}Ni_{0.6}Co_{0.4}$ were 385, 328 and 333mAh/g, respectively. These alloys were fully activated within five charge/discharge cycles and had a good charge and discharge rate capabilities and temperature characteristics.

  • PDF

Composition Dependence of Perpendicular Magnetic Anisotropy in Ta/CoxFe80-xB20/MgO/Ta (x=0, 10, 60) Multilayers

  • Lam, D.D.;Bonell, F.;Miwa, S.;Shiota, Y.;Yakushiji, K.;Kubota, H.;Nozaki, T.;Fukushima, A.;Yuasa, S.;Suzuki, Y.
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.5-8
    • /
    • 2013
  • The perpendicular magnetic anisotropy of sputtered CoFeB thin films covered by MgO was investigated by vibrating sample magnetometry. Three different $Co_xFe_{80-x}B_{20}$ alloys were studied. Under out-of plane magnetic field, the saturation field was found to increase with increasing the Co content. The magnetization and interface anisotropy energy were obtained for all samples. Both showed a marked dependence on the MgO overlayer thickness. In addition, their variations were found to be non-monotonous as a function of the Co concentration.

Effects of Minor Alloying Elements on the Microstructure and Mechanical Properties of High Conductivity Cu-Mg-P Base Alloys (Cu-Mg-P계 고전도성 합금의 미세조직 및 기계적 성질에 미치는 미량합금원소의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ki-Tae;Kim, Hyun-Gil
    • Journal of Korea Foundry Society
    • /
    • v.28 no.2
    • /
    • pp.64-68
    • /
    • 2008
  • The microstructure of Cu-Mg-P base alloys were significantly affected by small amounts of Fe and Co additions, however the tensile properties and electrical conductivity of the Cu alloys were mainly determined by the fabrication process. Relatively high electrical conductivity (> 80% IACS) was obtained in the all Cu-Mg-P based alloys when they were finally aged at $480^{\circ}C$. Tensile properties could be significantly enhanced by final cold rolling, especially at extremely low temperatures. Softening of cold-rolled alloys took place at about $450^{\circ}C$ owing to recovery and recrystallization, but it was delayed up to $500^{\circ}C$ in the Fe-added alloy.