• Title/Summary/Keyword: Fe-As-S system

Search Result 405, Processing Time 0.035 seconds

Studies on the Electrical Properties of $Dy_{2-x}Sr_{1+x}Fe_2O_{7-y}$ ferrite System Which Can be used as Filler for Conducting Rubbers (도전성 고무의 충전제로 이용 가능한 $Dy_{2-x}Sr_{1+x}Fe_2O_{7-y}$ 페라이트계의 전기적 특성에 대한 연구)

  • Lee, Eun-Seok;Choi, Sei-Young
    • Elastomers and Composites
    • /
    • v.28 no.2
    • /
    • pp.103-107
    • /
    • 1993
  • To make new filler for conducting rubber, the sample of perovskite-related ferrite system $Dy_{2-x}Sr_{1+x}Fe_2O_{7-y}$ (x=0.0, 0.5, 1.0, 1.5, and 2.0) were synthesized at 1473K in air. $M{\ddot{o}}ssbauer$ spetrum of x=0.0 sample shows typical six line pattern with $M{\ddot{o}}ssbauer$ parameters, $I.S=3.6{\times}10^{-1}mm/sec,\;E_Q=-7.0{\times}10^{-2}mm/sec,\;H_{int}=5.19{\times}10^2\;Koe$. In case of x=2.0, the spectrum is composed of single line exhibiting coexistance of $Fe^{3+}(I.S.=3.7{\times}10^{-1}mm/sec)$ ions and $Fe^{4+}(I.S.=-1.9{\times}10^{-1}mm/sec)$ ions. With increase in x value electrical conductivity at constant temperature sharply increased and the activation energies decreased from $3.8{\times}10^{-1}\;to\;1.9{\times}10^{-1}\;eV$.

  • PDF

Magnetic Properties of Fe-System Thin Films with Non-equilibrium Phases (비평형 Fe계 박막의 자기 특성)

  • Kim, H.S.;Min, B.K.;Song, J.S.;Oh, Y.W.;Lee, W.J.;Lee, D.Y.;Kim, l.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.13-16
    • /
    • 2000
  • In this study, we have fabricated nonequilibrium $Fe_{85.6}Zr_{3.3}B_{5.7}Ag_{5.4}$ thin film, which contains an additional insoluble element Ag, by using DC magnetron sputtering method. We have investigated the magnetic properties of amorphous $Fe_{85.6}Zr_{3.3}B_{5.7}Ag_{5.4}$ thin film as a function of rotational field annealing(RFA). After deposition, the amorphous $Fe_{85.6}Zr_{3.3}B_{5.7}Ag_{5.4}$ thin film annealed by rotational field annealing method at $350^{\circ}C$ for an hour was founded to have high permeability of 8680 of 100 MHz, 0.2 mOe, low coercivity of 0.86 De and very low core loss of 1.3 W/cc at 1 MHz, 0.1T.

  • PDF

Preparation of Iron-Coated Sand and Arsenic Adsorption (철코팅 모래흡착제 제조 및 비소흡착)

  • Chang, Yoon-Young;Kim, Kwang-Sub;Jung, Jae-Hyun;Lee, Seung-Mok;Yang, Jae-Kyu;Park, Joon-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.697-703
    • /
    • 2005
  • Iron-coated sand(ICS) was prepared with variation of particle size of Joomoonjin sand, primary and secondary coating temperature, coating time, and dosage of initial Fe(III). An optimum condition of the preparation ICS was selected from the coating efficiency, stability of coated Fe(III), and removal efficiency of As(V). Coated amount of Fe(III) increased as primary coating temperature increased with smaller particle size of sand. Coating efficiency was quite similar over the investigated secondary coating temperature and time, while adsorption efficiency of As(V) onto ICS was severely reduced with ICS prepared at higher secondary coating temperature. By considering these results, an optimum secondary coating temperature and time for the preparation of ICS was selected as $150^{\circ}C$ and 1-hr, respectively. Coating efficiency increased us the dosage of initial Fe(III) up to 0.8 Fe(III) mol/kg sand and then no distinct increase was noted. Maximum As(V) adsorption was observed at 0.8 Fe(III) mol/kg sand. Secondary coating temperature and time were important parameters affecting stability of ICS, showing decreased dissolution of Fe(III) from ICS prepared at higher coating temperature and at longer coating time. From anionic type adsorption of As(V) onto ICS, it is possible to suggest the application of ICS for the removal of As(V) contaminated in acidic water system.

An Efficient Procedure for the Synthesis of Benzimidazoles Using H2O2/SiO2-FeCl3 System (H2O2/SiO2-FeCl3 계를 이용한 Benzimidazoles의 효율적인 합성)

  • Fazlinia, Abbas;Mosslemin, Mohammad Hossein;Sadoughi, Hesamaddin
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.579-581
    • /
    • 2010
  • Solid silica supported ferric chloride ($SiO_2-FeCl_3$) catalyzed one-step synthesis of various benzimidazoles from o-phenylenediamine and aldehydes using $H_2O_2$ as the oxidant. The salient features of this method are simple and convenient procedure, easy purification and shorter reaction times.

Temperature Dependence of Magnetic State of Fe/Al Multilayered Films

  • Lee, S. J.;J. S. Baek;Kim, Y. Y.;W. Y. Lim;W. Abdul-Razzaq
    • Journal of Magnetics
    • /
    • v.2 no.3
    • /
    • pp.93-95
    • /
    • 1997
  • We investigated the temperature dependence of magnetization of Fe/Al multilayers fabricated by dc magnetron sputtering system. As the temperature increased from 5 K in a low magnetic field (100G) the magnetization of the samples increased and made a broad peak at some critical temperature. Further increase of temperature decresed the magnetization as an ardinary ferromagnetic curve. Part of samples show rapid increase of magnetization at low temperature. A model developed in this study suggests that the biquadratic coupling yields such a rapidly increasing behavior of magnetization at low temperature.

  • PDF

Study of Nonstoichiometry and Physical Properties of the $Ca_xEu_{1-x}FeO_{3-y}$ System

  • Roh, Kwon-Sun;Ryu, Kwang-Sun;Ryu, Kwang-Hyun;Yo, Chul-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.7
    • /
    • pp.541-545
    • /
    • 1994
  • A series of samples of the ${Ca_xEu_{1-x}FeO_{3-y}$ (x=0.00, 0.25, 0.50, 0.75, and 1.00) system has been prepared at $1,250^{\circ}C$ under an atmospheric air pressure. X-ray diffraction analysis of the solid solution assigns the structure of the compositions of x=0.00, 0.25, 0.50, and 0.75 to the orthoferrite-type orthorhombic system, and that of x=1.00 to the brownmillerite-type orthorhombic one. The mole ratios of $Fe^{4+}$ ion in the solid solutions or ${\tau}$ values were determined by the Mohr's salt analysis and nonstoichiometric chemical formulas of the system were formulated from x, ${\tau}$, and y values. From the result of the Mossbauer spectroscopy, the coordination and magnetic property of the iron ion are discussed. The electrical conductivities are measured as a function of temperature. The activation energy is minimum at the composition of x=0.25. The conduction mechanism can be explained by the hopping of electrons between the mixed valences of $Fe^{3+}\;and\;Fe^{4+}$ ions.

A Study on Mossbauer Spectra of the ${Ni_{1+x}}{Ti_x}{Fe_{2-2x}}O_4$ System (${Ni_{1+x}}{Ti_x}{Fe_{2-2x}}O_4$계의 $\M"{o}ssbauer$ 스펙트럼 연구)

  • Baek, Seung-Do;Ko, Jeong-Dae;Hong, Sung-Rak
    • Korean Journal of Materials Research
    • /
    • v.11 no.1
    • /
    • pp.3-7
    • /
    • 2001
  • $M\"{o}ssbauer$ spectra of the $Ni_{1+x}Ti_xFe_{2-2x}O_4$ systems ($0{\leqq}x{\leqq}0.7$), which appear as single phase spinel structure, were examined at RT. The $M\"{o}ssbauer$ spectra reveal two sextet for $0{\leqq}x{\leqq}0.3$, two sextet and a doublet for $0.4{\leqq}x{\leqq}0.6$, and a doublet for x=0.7 As x increases, the area ratio of B-site and A-site($A_B/A_A$) of the sextet decreases, and the area ratio of the doublet and the total areas($A_{doublet}/A_{tot.}$) increases. The isomer shift(I.S.) of A-site slightly increases and magnetic hyperfine fields($H_{hf}$) of two sites decrease as the increasing x. From these results, we have obtained the cation distributions of the samples and concluded that the increasing x leads to the decrease of covalency of $Fe^{3+}-O^{2-}$ bond in A-sites and A-B superexchange interactions.eractions.

  • PDF

Control of Grain Refinement and Anisotropy of NdFeB Alloy Powder by Severe Plastic Deformation Fabricated by the Gas Atomization Process (가스분무로 제조된 NdFeB 합금분말의 강소성변형을 통한 결정립 미세화 및 이방성 제어)

  • Cho, J.Y.;Park, S.M.;Hussain, J.;Song, M.S.;Kim, T.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.3
    • /
    • pp.124-128
    • /
    • 2022
  • NdFeB magnets have been positioned as the core materials in advanced technologies such as MRI (magnetic resonance imaging), FA (factory automation system), robot, motors, and so on based on the highest magnetic properties. To effectively improve the refined microstructure, the plastic deformation has been known as the good alternatives by the recrystallization. However, it has been regarded as being impossible because of the few slip systems in the RE-Fe-B magnets at room temperature. The purpose of this study was to investigate the possibility of control of grain refinement and magnetic anisotropy of NdFeB alloy powder by the severe plastic deformation. The NdFeB magnet powder was fabricated by gas atomization process, and the powder was pre-compacted at high temperature. The pre-compacted billets were deformed by HPT (high pressure torsion), and then the deformed billets were observed microstructure and magnetic properties. After the HPT process at room temperature, the grain size decreased with increasing because of the melted Nd-rich phase, and the anisotropy of Nd2Fe14B phase was formed after the HPT process.

A Microscopic Study on Treatment Mechanism of Acid Mine Drainage by Porous Zeolite-slag Ceramics Packed in a Column Reactor System (컬럼반응조 내 충진된 다공성 zeolite-slag 세라믹에 의한 산성광산배수의 처리기작에 대한 미세분석 연구)

  • Yim, Soo-Bin
    • Journal of Korean Society of Water Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.13-26
    • /
    • 2018
  • This research was conducted to elucidate the removal mechanism of heavy metals and sulfate ion from acid mine drainage(AMD) by porous zeolite-slag ceramics (ZS ceramics) packed in a column reactor system. The average removal efficiencies of heavy metals and sulfate ion from AMD by the 1:3(Z:S) porous ZS ceramics in the column reactor under the HRT condition of 24 hours were Al 97.5%, As 98.8%, Cd 86.1%, Cu 96.2%, Fe 99.7%, Mn 64.1%, Pb 97.2%, Zn 66.7%, and $SO_4{^{2-}}$ 76.0% during 121 days of operation time. The XRD analysis showed that the ferric iron from AMD could be removed by adsorption and/or ion-exchange on the porous ZS ceramics. In addition it was known that Al, As, Cu, Mn, and Zn could adsorb or coprecipitate on the surface of Fe precipitates such as schwertmannite, ferrihydrite, or goethite. The EDS analysis revealed that Al, Fe, and Mn, which were of relatively high concentration in the AMD, would be adsorbed and/or ion-exchanged on the porous ZS ceramics and also exhibited that Al, Cu, Fe, Mn, and Zn could be precipitated as the form of metal hydroxide or sulfate and adsorbed or coprecipitated on the surface of Fe precipitates. The microscopic results on the porous ZS ceramics and precipitated sludge in a column reactor system suggested that the heavy metals and sulfate ion from AMD would be eliminated by the multiple mechanisms of coprecipitation, adsorption, ion-exchange as well as precipitation.

The Importance of Reaction Mechanisms in Interpreting the Arsenic Reactive Transport of FeS-coated Sand Column

  • Han, Young-Soo;Demond, Avery H.;Hayes, Kim F.
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.1-10
    • /
    • 2015
  • FeS, as a natural reduced iron mineral, has been recognized to be a viable reactive material for As(III) sequestration in natural and engineered systems. In this study, FeS-coated sand packed columns were tested to evaluate the As(III) removal capacities under anaerobic conditions at pH 5, 7 and 9. The column obtained As(III) removal capacity was then compared with the capacity result obtained from batch reactors. In the comparison, two different approaches were used. The first approach was used the total As(III) removal capacity which method was proved to be useful for interpreting pH 5 system. The second approach was used to consider sorption non-linearity and proved to be useful for interpreting the pH 9. The results demonstrated that a mechanistic understanding of the different removal processes at different pH conditions is important to interpret the column experimental results. At pH 5, where the precipitation of arsenic sulfide plays the major role in the removal of arsenic, the column shows a greater removal efficiency than the batch system due to the continuous dissolution of sulfide and precipitation of arsenic sulfide. At pH 9, where adsorption mainly governs the arsenic removal, the sorption nonlinearity should be considered in the estimation of the column capacity. This study highlighted the importance of understanding reaction mechanism to predict column performance using batch-obtained experimental results.