• Title/Summary/Keyword: Fe precursors

Search Result 88, Processing Time 0.022 seconds

Low-Temperature Preparation of Ultrafine Fe2O3 Powder from Organometallic Precursors (유기금속 전구체로부터 초미립 $Fe_2O_3$ 분말의 저온 합성)

  • 김정수;김익범;강한철;홍양기
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.942-948
    • /
    • 1992
  • Ultrafine iron oxide powder, {{{{ gamma }}-Fe2O3 and $\alpha$-Fe2O3, were prepared by the thermal decomposition of organometallic compounds. The formation process of powder includes the thermal decomposition and oxidation of the organometallic precursors, Fe(N2H3COO)2(N2H4)2 (A) and N2H5Fe(N2H3COO)3.H2O (B). The organometallic precursors, A and B, were synthesized by the reaction of ferrous ion with hydrazinocarboxylic acid, and characterized by quantitative analysis and infrared spectroscopy. The mechanistic study for the thermal decomposition was performed by DAT-TG. The iron oxide powder was obtained by the heat treatment of the precursors at 20$0^{\circ}C$ and $600^{\circ}C$ for half an hour in air. The phases of the resulting product were proved {{{{ gamma }}-Fe2O3 and $\alpha$-Fe2O3 respectively. The particle shape was equiaxial and the particle size was less than 0.1 ${\mu}{\textrm}{m}$. Magnetic properties of the {{{{ gamma }}-Fe2O3 powder obtained from A and B was 234 Oe of coercivity, 64.26 emu/g of saturation magnetization, 23.59 emu/g of remanent magnetization and 24.1 Oe, 47.27 emu/g, 3.118 emu/g respectively. The value of $\alpha$-Fe2O3 powder was 1.494 Oe, 0.4862 emu/g, 0.1832 emu/g and 1,276 Oe, 0.4854 emu/g, 0.1856 emu/g respectively.

  • PDF

Oxidative Dehydrogenation of 1-butene over BiFe0.65MoP0.1 Catalyst: Effect of Phosphorous Precursors (BiFe0.65MoP0.1 촉매 상에서 1-부텐의 산화탈수소화 반응 : 인 전구체의 영향)

  • Park, Jung-Hyun;Youn, Hyun Ki;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.824-830
    • /
    • 2015
  • The influence of phosphorous precursors, $NH_4H_2PO_4$, $(NH_4)_2HPO_4$, $H_3PO_4$, $(C_2H_5)_3PO_4$, and $P_2O_5$, on the catalytic performance of the $BiFe_{0.65}MoP_{0.1}$ catalysts in the oxidative dehydrogenation of 1-butene to 1,3-butadiene was studied. The catalysts were characterized by XRD, $N_2$-sorption, ICP, SEM and TPRO analyses. It was not observed big difference on the physical properties of catalysts in accordance with used different phosphorous precursors, however, the catalytic performance was largely depended on the nature of the phosphorous precursors. Of various precursors, the $BiFe_{0.65}MoP_{0.1}$ oxide catalyst, which was prepared from a phosphoric acid precursor, showed the best catalytic performance. Conversion and yield to butadiene of the catalyst showed 79.5% and 67.7%, respectively, after 14 h on stream. The cation of phosphorous precursors was speculated to affect the lattice structure of the catalysts during catalyst preparation and this difference was influenced on the re-oxidation ability of the catalysts. Based on the results of TPRO, it was proposed that the catalytic performance could be correlated with re-oxidation ability of the catalysts.

Preparation of Highly Efficient Nd-Fe-B Magnetic Powders by Reduction/Diffusion Process (환원/확산 공정에 의한 고성능 Nd-Fe-B 자성분말의 제조)

  • Kim, Dongsoo;Chen, Chunqiang;Baek, Younkyoung;Choi, Chuljin
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.197-202
    • /
    • 2013
  • A novel route to prepare Nd-Fe-B magnetic particles by utilizing both spray drying and reduction/diffusion processes was investigated in this study. Precursors were prepared by spray drying method using the aqueous solutions containing Nd salt, Fe salt and boric acid with stoichiometric ratios. Precursor particles could be obtained with various sizes from 2 to $10{\mu}m$ by controlling concentrations of the solutions and the average size of $2{\mu}m$ of precursors were selected for further steps. After heat treatment of precursors in air, Nd and Fe oxides were formed through desalting procedure, followed by reduction processes in Hydrogen ($H_2$) atmosphere and with Calcium (Ca) granules in Argon (Ar) successively. Moreover, diffusion between Nd and Fe occurred during Ca reduction and $Nd_2Fe_{14}B$ particles were formed. With Ca amount added to particles after $H_2$ reduction, intrinsic coercivity was changed from 1 to 10 kOe. In order to remove and leach CaO and residual Ca, de-ionized water and dilute acid were used. Acidic solutions were more effective to eliminate impurities, but Fe and Nd were dissolved out from the particles. Finally, $Nd_2Fe_{14}B$ magnetic particles were synthesized after washing in de-ionized water with a mean size of $2{\mu}m$ and their maximum energy product showed 9.23 MGOe.

Preparation of Cobalt-Substituted Iron Oxide Powder from Organometallic Precursors (Ⅱ) (유기금속 전구체로부터 코발트 치환 산화철 분말 제조 (Ⅱ))

  • Kim, Jeong Su;Gang, Han Cheol;Hong, Yang Gi
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.2
    • /
    • pp.92-100
    • /
    • 1994
  • Ultrafine cobalt-substituted iron oxide particles were prepared by the thermal decomposition and oxidation of the new organometallic precursor, $Co_xFe_{1-x}(N_2H_3COO)_2(N_2H_4)_2$ (x = 0, 0.01, 0.02, 0.03, 0.05, 0.10, 1.00). The organometallic precursors were synthesized by the reaction of Co(II) and Fe(II) ion in a mole ratio of x : 1-x with hydrazinocarboxylic acid, and characterized by quantitative analysis, elemental analysis and infrared spectroscopy. The mechanistic study on the thermal decomposition of the organometallic precursors was performed by TG-DTG and DSC. The cobalt-substituted iron oxide particles were obtained by the heat treatment of the precursors at $350^{\circ}C$ and $450^{\circ}C$ for six hours in air. The prepared iron oxide was found to have two phases such as ${\gamma}-Fe_2O_3$ and a mixture of ${\gamma}-Fe_2O_3\;and\;{\alpha}-Fe_2O_3$ at $350^{\circ}C$ and $450^{\circ}C$ respectively. The particle shape was equiaxial and the particle size was less than 0.05 ${\mu}m.$ The coercivity and squareness of the cobalt substituted iron oxide particles increased with increasing cobalt content. Both coercivity and squareness showed higher values at $450^{\circ}C.$

  • PDF

Synthesis and Solution Chemistry of Metal Hydrides from Cationic Rhodium(I) Catalyst Precursors [(L-L)Rh(NBD)]$ClO_4 (L-L=Fe({\eta}^5-C_5H_4PBu^t\;_2)_2,\;Fe{\eta}^5-C_5H_4PPhBu^t)_2)$

  • Tae-Jeong Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.134-139
    • /
    • 1990
  • The hydrogenation catalyst precursors $[(L-L)Rh(NBD)]ClO_4\;(L-L=Fe({\eta}^5-C_5H_4PBu^t\;_2)_2,\;Fe({\eta}^5-C_5H_4PPhBu^t)_2$; NBD = norbornadiene) react with $H_2(1\;atm,\;30^{\circ}C$, MeOH) to yield $[(L-L)HRh({\mu}-H)_3RhH(L-L)]ClO_4$. These hydrido species are fluxional, and variable temperature NMR studies show the existence of a number of equilibria involving both fluxional and non-fluxional species. The synthesis, solution structures, and fluxional behaviors of these hydrides are described.

pH Dependence on the Degradation of Rhodamine B by Fe-ACF/$TiO_2$ Composites and Effect of Different Fe Precursors (Fe-ACF/$TiO_2$ 복합체에 의한 로다민 B 용액의 분해에 있어서 pH 의존성 및 여러 가지 Fe 전구체의 효과)

  • Zhang, Kan;Oh, Won-Chun
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.408-415
    • /
    • 2009
  • Iron-loaded activated carbon fibers (Fe-ACF) supported titanium dioxide ($TiO_2$) photocatalyst (Fe-ACF/$TiO_2$) was synthesized using a sol-gel method. Three different types of Fe-ACF/$TiO_2$ were obtained by treatment with different precursor of Fe, and characterized using BET, SEM, XRD and EDX analysis. The photocatalytic activity of Fe-ACF/$TiO_2$ was investigated by the degradation of Rhodamine B (Rh.B) solution under UV irradiation. From the experimental results, it was revealed that Fe-ACF/$TiO_2$ composites show considerable photocatalytic ability for the removal of Rh.B by comparing non-treated ACF/$TiO_2$ composites. And photo-Fenton reaction with Fe element was incoordinately influenced due to different precursor of Fe. It clearly indicates that Fe-ACF/$TiO_2$ composites prepared using $FeCl_3$ provided the highest photo-Fenton activity, then, which was affected by pH changes on the degradation of Rh.B.

Response Optimization for the Preparation of MIL-100(Fe)@COF Materials Using Design of Experiments

  • Min Hyung Lee;Sangmin Lee;Kye Sang Yoo
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.455-459
    • /
    • 2023
  • Three different optimization studies were conducted for the synthesis of MIL-100(Fe) and MIL-100(Fe)@COF using design of experiments. In the first study, the optimal concentration of precursors was determined using a mixture design method, and a modified molar ratio of 0.4155:0.2664:0.3182 was found to yield the highest crystallinity. In the second study, a central composite design was used to optimize the main factors of synthesis temperature and time with a synthesis temperature of 161℃ and a synthesis time of 12 hours. In the third study, a screening design method was used to determine the effect of five precursors on the formation of MIL-100(Fe)@COF, and the presence of characteristic peaks at 1552, 1483, and 1354 cm-1 was found to be important for the existence of the COF structure. MIL-100(Fe)@COF synthesized with a modified molar ratio of 0.4831:0.4169:0.1 was predicted to exhibit optimal conditions.

A Study on the Synthesis of Tricyclopentadiene Using Ionic Liquid Catalysts (이온성 액체 촉매를 이용한 Tricyclopentadiene 합성에 관한 연구)

  • Kim, Su-Jung;Han, Jeongsik;Jeon, Jong-Ki;Yim, Jin-Heong
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.593-597
    • /
    • 2015
  • Tricyclopentadiene (TCPD) as a next generation high density fuel was synthesized by Diels-Alder oligomerization reaction of DCPD. TCPD was prepared by ionic liquid (IL) catalysts with combination of cationic and anionic precursors. Two kinds of anionic precursors such as copper(I) chloride (CuCl) and iron(III) chloride ($FeCl_3$) and cationic precursors such as triethylamine hydrochloride (TEAC) and 1-butyl-3-methylimidazolium chloride (BMIC) were used. The preparation of TCPD using IL catalyst was superior to that using Diels-Alder reaction in terms of DCPD conversion and TCPD yield. In addition, TCPD yield was correlated with Lewis acidity by changing the ratio of anionic and cationic precursors. The TCPD yield was higher when using CuCl as anionic precursor than that of using $FeCl_3$. Control of Lewis acidity by changing the molar ratio of anionic and cationic precursors could further improve TCPD yield as well.

The influence of Co and Fe on the color change of diopside crystals (Co, Fe가 diopside 결정색 변화에 미치는 영향)

  • Byeon, Soo Min;Lee, Byung-Ha
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.183-189
    • /
    • 2014
  • This study was conducted to study the influence of Co and Fe on the color of glaze and diopside crystals in the diopside crystal glaze empirically produced and used by ceramic artists, in case of adding $Co_3O_4$ and $Fe_2O_3$. As a result, the color of glaze was blue when $Co_3O_4$ was added to the diopside crystal glaze and the diopside crystals appeared pastel violet with Co included. When $Fe_2O_3$ was added to the diopside crystal glaze, the color of glaze appeared brown and the color of diopside crystals was goldenrod with Fe included. The crystals precipitated on the surface of diopside consisted of diopside crystals and diopside precursors. With longer retention time, the amount of diopside precursors decreased and the amount of diopside crystals increased. Also, Co was more easily included by the diopside crystals than Fe was and crystallizability of dispside was improved in case of including Co. Including Fe lowered peak intensity of properties and partially dissolved the diopside crystals.

Magnetic Properties of Fe Nanoparticles Synthesized by Chemical Vapor Condensation

  • Park, C. J.;Kim, B. K.;X. L. Dong
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.228-229
    • /
    • 2000
  • Magnetic Fe nanoparticles were synthesized by CVC process using Fe(CO)$\sub$5/ as precursors. The nanoparticles have core-shell structures with uniform dispersion. For the specific purposes, the micostructures as well as the magnetic states of Fe nanoparticles can be controlled by adjusting the process parameters, such as the carrier gases, the decomposition temperature, the cooling of powder, etc.

  • PDF