• Title/Summary/Keyword: Fe dissolution

Search Result 200, Processing Time 0.024 seconds

Determination of Mineral and Trace Elements in Ganoderma Lucidum Consumed in China, Vietnam and Korea

  • Nguyen Thi Van;Park Moon-Ki
    • Journal of Environmental Science International
    • /
    • v.16 no.1
    • /
    • pp.21-26
    • /
    • 2007
  • The concentrations of fourteen mineral and trace elements (Al, Ca, Fe, K, Mg, Se, Ba, Co, Cu, V, Pb, Hg, Cd and As) were determined in Ganoderma Lucidum and their infusions consumed for medical purposes collected from Vietnam, China and some places in Korea. Concentrated acid digestion procedure was applied under optimized conditions for dissolution of these medicinal fungi. Element concentrations in these fungi and their in-fusions were then determined by ICP-AES. The mineral and trace element content of these samples and their in-fusions showed a wide variability However, distribution of some elements in the infusions is not high.

Electrochemical Synthesis of Octahedral Nanostructured PbF2

  • Lee, Joon-Ho;Choi, Jin-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.463-466
    • /
    • 2011
  • In this work, we investigate anodization of Pb in ethylene glycol containing small amount of $NH_4F$, demonstrating that ${\beta}-PbF_2$ particles with octahedral morphology can be prepared by adjusting the applied potential and anodizing time. FE-SEM images and XRD measurements of anodic nanostructures as a function of anodizing time clearly show that PbO is first formed on Pb. Subsequently, a local dissolution of PbO leads to formation of skeleton structure of PbO, releasing $Pb^{2+}$ ions in the electrolyte. The lead ions can be precipitated on the walls or intersection of the skeleton walls when the concentration of lead ions is saturated. The method described in this article shows the feasibility of formation of metal fluoride crystal by anodization of metal in a fluoride containing solution.

퇴적물 내 비소의 지구미생물학적 거동 연구

  • Lee Jong-Un;Lee Sang-U;Park Ji-Min;Kim Gyeong-Ung;Jeon Hyo-Taek;Jeong Myeong-Chae
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.111-114
    • /
    • 2006
  • The effects of indigenous bacteria on geochemical behavior of As in As-contaminated sediments (Hwachon mine and Myoungbong mine) after biostimulation with a variety of carbon sources were investigated under anaerobic condition. In Hwachon sediment, As was dramatically extracted from nonsterile sediment with time, reaching the highest concentration of $500{\mu}g/L$. The As leaching was likely caused by microbial dissolution of Fe oxides/oxyhydroxides with which As had been coprecipitated. However, in the case of Myoungbong sediment supplied with glucose, dissolved As decreased with time likely due to production of As sulfide(s) and subsequent precipitation, which resulted from bacterial reduction of $SO_4^{2-}$. The results implied that bacterial in-situ stabilization of As In subsurface has a potential to be practically applied.

  • PDF

Supergene Alteration of Amphibole in Suryun Kaolin Deposits: Mineralogical and morphological Studies (수륜 고령토광산에서 산출되는 각섬석의 표성 변질작용: 광물학적 및 형태적 연구)

  • 김수진;아비드무타자칸;이동진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.37-46
    • /
    • 1989
  • X-ray, optical and electron microscope studies exhibit that the amphiboles in anorthositic saprolite from kaolin deposits, located in Suryun-myeon, Seongju-gun, Kyungsangbuk-do, have altered under weathering conditions to smectite, mixed-layer mineral, vermiculite and goethite. In early supergene alteration stage when rock structure is still preserved, smectite occurs as initial weathering product of amphibole. Further weathering leads to the formation of mixed-layer mineral, vermiculite and goethite as indicated by XRD and SEM studies. Scanning electron microscopy studies of amphibole show that the dissolution of amphibole proceeds by selective etching at the surface along weaker zones producing distinct etch pattern, The calcic amphiboles according to electron microprobe analyses, show leaching of the most mobile elements (Mg, Ca and Fe) during alteration.

  • PDF

GasNitriding Bechavior Austenitic High Cr Steels (오스테나이트계 고크롬강의 가스질화거동에 관한 연구)

  • Kim, Y.H.;Kim, D.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.258-267
    • /
    • 1998
  • For the purpose of investigating the growth characteristics and composition of nitrides, gas nitridings of the austenitic stainless steel, STR 36 heat resisting steel and martensitic stainless steel are investigated at the temperature ranges between $500^{\circ}C$ and $675^{\circ}C$ for 5hours under the $75%NH_3+5%CO_2+20%$Air gas atmosphere. When gas nitriding the austentic stainless steel and STR 36 heat resisting alloy, the abnormal growth behavior of compound layer deviating from the conventional diffusion law with increasing temperature appears, while the compound layer of martensitic stainless steel shows the normal diffusional growth behavior. From the examination of microstructure, X-ray diffraction and hardness test, it is concluded that the abnormal growth behavior of compound layer with increasing temperature induces from the formation and dissolution of CrN and ${\gamma}^{\prime}-Fe_4N$ at the nitriding temperature ranges of $600{\sim}650^{\circ}C$.

  • PDF

Investigation of Relationship between Etch Current and Morphology and Porosity of Porous Silicon

  • Jang, Seunghyun
    • Journal of Integrative Natural Science
    • /
    • v.3 no.4
    • /
    • pp.210-214
    • /
    • 2010
  • Relationship between etch current and morphology and porosity of porous silicon (PS) has been investigated. The gravimetric method is applied to measured the porosity of PS. As the current density increase, the silicon dissolution rate increases, resulting in a higher porosity and etching rate. The result shows that linear dependence of PS porosity and etching rate as a function of current density. The morphology of porous silicon was investigated by using cold field emission scanning electron micrograph (FE-SEM). The size of pores formed during anodization is predominantly controlled by the current density, with an increase in the pore size corresponding to an increase in the current density.

Determination of trace elements in food reference materials by instrumental neutron activation analysis

  • Cho, K.H.;Zeisler, R.;Park, K.W.
    • Analytical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.520-528
    • /
    • 2005
  • Two biological Certified Reference Materials (CRMs), KRISS 108-04-001 (oyster tissue) and 108-05-001 (water dropwort stem), were prepared by Korea Research Institute of Standards and Science (KRISS)during FY '01. The certified values of these materials had been determined by Isotope Dilution Mass Spectrometry (IDMS) for six elements (Cd, Cr, Cu, Fe, Pb and Zn). Additional analytical works are now progressing to certify the concentrations of a number of the environmental and nutrimental elements in these CRMs. The certified values in a CRM are usually determined by using a single primary method with confirmation by other method(s) or using two independent critically-evaluated methods. Instrumental Neutron Activation Analysis (INAA) plays an important role in the determination of certified values as it can eliminate the possibility of common error sources resulting from sample dissolution. In this study INAA procedure was used in determination of 23 elements in these two biological CRMs to acquire the concentration information and the results were compared with KRISS certified values.

A Study on SiC/SiC and SiC/Mild steel brazing by the Ag-Ti based alloys (Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에 대한 연구)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.99-108
    • /
    • 1996
  • The microstructure and bond strength are examined on the SiC/SiC and SiC/mild steel joints brazed by the Ag-Ti based alloys with different Ti contents. In the SiC/SiC brazed joints, the thickness of the reaction layers at the bond interface and the Ti particles in the brazing alloy matrices increase with Ti contents. When Ti is added up to 9 at% in the brazing alloy. $Ti_3SiC_2$ phase in addition to TiC and $Ti_5Si_3$ phase is newly created at the bond interface and TiAg phase is produced from peritectic reaction in the brazing alloy matrix. In the SiC/mild steel joints brazed with different Ti contents, the microstructure at the bond interface and in the brazing alloy matrix near SiC varies similarly to the case of SiC/SiC brazed joints. But, in the brazing alloy matrix near the mild steel, Fe-Ti intermetallic compounds are produced and increased with Ti contents. The bond strengths of the SiC/SiC and SiC/mild steel brazed joints are independent on Ti contents in the brazing alloy. There are no large differences of the bond strength between SiC/SiC and SiC/mild steel brazed joints. In the SiC/mild steel brazed joints, Fe dissolved from the mild steel does not affect on the bond strength of the joints. Thermal contraction of the mild steel has nearly no effects on the bond strength due to the wide brazing gap of specimens used in the four-point bend test. The brazed joints has the average bond strength of about 200 MPa independently on Ti contents, Fe dissolution and joint type. Fracture in four-point bend test initiates at the interface between SiC and TiC reaction layer and propagates through SiC bulk. The adhesive strength between SiC and TiC reaction layer seems to mainly control the bond strength of the brazed joints.

  • PDF

Phosphorus Speciation and Bioavailability in Intertidal Sediments of Keunso Bay, Yellow Sea During Summer and Winter (서해 근소만 조간대 퇴적물에서 여름과 겨울에 인의 존재형태)

  • Kim, Dong-Seon;Kim, Kyung-Hee
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.177-186
    • /
    • 2010
  • A sequential extraction technique was used to study sediment phosphorus speciation and its relative importance in the intertidal flat of Keunso Bay during summer and winter for a better understanding of the phosphorus cycle and bioavailability in intertidal sediments. Loosely sorbed P contents were the lowest among the five P-pools and showed little seasonal or spatial variation. Although Fe-bound P contents were almost constant in winter, they decreased rapidly with sediment depth in summer. The dissolution of Fe oxides, used as an oxidant for the anaerobic respiration, ascribed the rapid decrease of Fe-bound P in summer. Al-bound P contents displayed little seasonal variation, but showed a large spatial variation, with higher values in the upper intertidal flat. Comprising about 50% of total P, Ca-bound P contents were the highest among the five P-pools. Ca-bound P contents were higher in winter than summer, but did not exhibit a clear spatial variation. Organic P contents were higher in summer than winter, which was associated with higher primary production and clam biomass in summer. Organic P contents were higher in the lower intertidal flat than the upper intertidal flat. In Keunso Bay, bioavailable P contents of the intertidal flat comprising about one third of total P ranged from 2.41 to 5.09 ${\mu}molg^{-1}$ in summer and 3.82 to 5.29 ${\mu}molg^{-1}$ in winter. The bioavailability of P contents was higher in the lower intertidal flat than the upper intertidal flat, which was attributed to the large clam production in the lower intertidal flat.

Temporal and Spatial Variation and Removal Efficiency of Heavy Metals in the Stream Water Affected by Leachate from the Jiknaegol Tailings Impoundment of the Yeonhwa II Mine (제2연화광산 직내골 광미장 침출수에 오염된 하천수계의 시.공간적 수질변화 및 중금속 제거효율)

  • Lee, Pyeong-Koo;Kang, Min-Ju;Choi, Sang-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.1
    • /
    • pp.19-31
    • /
    • 2011
  • This study had been carried out to investigate spatial and temporal variations of the concentrations of trace metals for contaminated surface water in creek affected by leachate from the tailings impoundment of the Yeonhwa II mine for about 2 years. It was also to ascertain the metal removal efficiency for potentially deleterious metals by the artificial and natural attenuation processes such as retention ponds and hydrologic mixing of uncontaminated tributaries. The concentrations of As, Pb, Cd, and Cu for leachate in the rainy season were not detected. On the other hand, the concentrations of Zn, Fe, Mn, Al, and $SO_4^{2-}$ in the rainy season for leachate were 2-66 times higher than those in the dry season, due to the oxidation of the sulfide minerals and the dissolution of the secondary minerals. The concentrations of Zn and Cd for leachate and surface water of the upper creek in the rainy season exceeded the criteria of River Water Quality and Drinking Water Quality but in the dry season, those of analyzed all the metals (As, Pb, Cd, Cu, Zn, Cd, Fe, Mn, and Al) for surface water sampled at the study area were below the criteria of River Water Quality and Drinking Water Quality. In regard of the attenuation efficiency for the concentrations of metals, Fe, Mn, Al, Zn, Cd, As, and Cu were removed highly at retention ponds, while the removal efficiency for major cations and sulfate ($SO_4^{2-}$) were related to mixing of the uncontaminated tributaries. Therefore, the major attenuation processes of the metal and sulfate contents in creek affected by leachate from a tailing dump were precipitation (accompanied by metal co-precipitation and sorption), water dilution, and neutralization.