• Title/Summary/Keyword: Fe contamination

Search Result 232, Processing Time 0.03 seconds

The Effects of pH Change in Extraction Solution on the Heavy Metals Extraction from Soil and Controversial Points for Partial Extraction in Korean Standard Method (용출액의 pH 변화가 토양내 중금속 용출에 미치는 영향과 그에 따른 국내 토양 오염 공정시험방법의 문제점)

  • 오창환;유연희;이평구;이영엽
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.159-170
    • /
    • 2003
  • Heavy metals are extracted from Chonju stream sediment, roadside soils and sediments along Honam expressway, soils and tailings from mining area using three different methods (partial extraction in Standard Method, partial extraction method with maintaining 0.1 N of extraction solution and Sequential Extraction Method). In samples having buffer capacity against acid, pH 1 (0.1 N HCl) of extraction solution can not be maintained and pH of extraction solution increases up to 8.0 when partial extraction in Standard Method is used. The averages and ranges of HPE(heavy metals extracted using partial extraction in Standard Method)/HPEM(heavy metals extracted using partial extraction method with maintaining 0.1 N of extraction solution) values are 0.479 and 0.145~0.929 for Cd, 0.534 and 0.078~0.928 for Zn, 0.432 and 0.041~0.992 for Mn, 0.359 and 0.011~0.874 for Cu, 0.150 and 0.018~0.530 for Cr, 0.219 and 0.003~0.853 for Pb, and 0.088 and 1.73${\times}$10$^{-5}$~0.303 for Fe. These data indicate that the difference between HPE and HPEM is large in the order of Fe, Cr, Pb, Cu, Mn, Cd and Zn. The amounts of heavy metals extracted decreases in the follow order; Sum III(sum of fraction I, II, III in sequential extraction)>HPEM>Sum III (sum of fraction I and II)>HPE for Zn, Cd and Mn and Sum III>HPEM>HPE for Cr and Fe. In the case Cr, Sum II is lower than HPEM and higher than HPE. In case of Cu, extracted heavy metals is large in the order Sum IV>HPEM>Sum III HPE. HPE/HPEM value decreases with increasing the amount of HCl used for maintaining 0.1 N of extraction solution. For samples with high buffer capacity, HPE/HPEM value in all elements is lower than 0.2. On the other hand, for samples with low buffer capacity, HPE/HPEM value are over 0.2 and many samples have values higher than 0.6 for Zn, Cd Mn and Cu due to the small difference between Sum II and Sum III, and relatively higher mobility. However, for Fe and Cr, HPE/HPEM value is below 0.2 even for samples with low buffer capacity due to their low mobility and big difference between Sum II and Sum III. This study indicates that the partial extraction method in Korean Standard Method of soil is not suitable for an assessment of soil contamination in area where buffer capacity of soil can be decreased or lost because of a long term exposure to environmental damage such as acidic rain.

Mineralogical and chemical characterization of arsenic solid phases in weath-ered mine tailings and their leaching potential (풍화광미내 고상 비소의 광물학적${\cdot}$화학적 특성 및 용출 가능성 평가)

  • 안주성;김주용;전철민;문희수
    • Economic and Environmental Geology
    • /
    • v.36 no.1
    • /
    • pp.27-38
    • /
    • 2003
  • Arsenic contamination around Au-Ag mining areas occurs mainly from the oxidation of arsenopyrite which is frequently contained in mine tailings. In weathered tailings, oxidation of sulfide minerals typically results in the formation of abundant ferric (oxy)hydroxides or (oxy)hydroxysulfates near the tailings surface, and arsenic may be associated with these secondary precipitates. In this study, solid phases of arsenic in weathered tailings of some Au-Ag mines were investigated through the SEM/EDS and sequential extraction analyses. The stability of As solid phases and the leaching potential were assessed with the variation of pH and Eh conditions. Oxidation of sulfides in the tailings samples was indicated by depletion of S molar concentrations compared to As and heavy metals. Under XRD examinations, jarosite as an Fe-oxyhydroxysulfate was found in the tailings of Deokeum, Dongil and Dadeok, and scorodite as an As-bearing crystalline mineral was identified from Dadeok which has the highest concentration of As (4.36 wt.%). Beudantite-like phases and some Pb-arsenates were also found under SEM/EDS analysis, and most of As phases were associated with Fe-(oxy)hydroxides and (oxy)hydroxysulfates despite a few arsenopyrite from Samgwang and Gubong. Sequential extraction analysis also showed that As was present predominantly as coprecipitated with Fe hydroxides from Dongil, Dadeok and Myungbong (72∼99%), and as sulfides (58%) and Fe hydroxide-associated forms (40%) from Samgwang and Gubong. In the tailings leaching experiment, As was released with high amounts by the dissolution of As-bearing Fe(oxy)hydroxysulfates in the lowest pH (2.7) conditions of Deokeum, and by desorption under alkaline conditions of Samgwang and Gubong. Higher leaching rates of arsenite(+3) were found under acidic conditions, which pose a higher risk to water quality. Changes in pH and Eh conditions coupled with microbial processes could influence the stabilities of the As solid phases, and thus, time amendments or landfilling of weathered tailings may result in enhanced As mobilization.

The Change in Geotechnical Properties of Clay Liner and the Contamination Behavior of Groundwater Due to Contaminant (오염물질에 의한 점토 차수재의 역학적 특성변화 및 지하수 오염거동)

  • Ha, Kwang-Hyun;Lee, Sang-Eun;Chung, Sung-Rae;Chun, Byung-Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.13-23
    • /
    • 2008
  • The triaxial compression tests and consolidation tests using NaCl solution and leachates as substitute pore (or saturated) water in samples were carried out to find out the behavior characteristics of strength, deformation and permeability coefficient of contaminated clay. Also, the chemical property analysis on the clay samples using scanning electron microscope and energy dispersive x-ray spectrometer were involved. The magnitudes of composition ratio were shown in the order of O, C, Si, Al, and Fe as a result of chemical composition analysis for clay samples. Besides, as the results of triaxial compression tests and consolidation tests, the shear strength, compression and permeability properties were increased with increasing in the concentration of contaminant (NaCl). It may be considered that these circumstances be caused by the changes of soil structure to flocculent structure due to the decrease in the thickness of diffuse double layer with increasing in the concentration of electrolyte. MT3D model was also using to grasp the procedures that the groundwater may be contaminated by the leachates permeated through the clay liner. The results of contaminant transport analysis showed a tendency that the predicted concentration of groundwater was higher with increasing in the initial concentration of $Cl^-$ ion and increased as a nonlinear curves with time. The transportation distance calculated by the use of regression equation between the distance from contaminant source and the concentration of $Cl^-$ ion was increased with increasing the initial concentration.

Environmental Characteristics of Groundwater for Sedimetary Rocks in Daegu City (대구시 퇴적암 분포 지역의 지하수에 대한 환경지화학적 특성)

  • 이인호;조병욱;이병대
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2003
  • Geochemical characteristics of groundwater in the different kinds of various lithology such as Haman formation, Panyaweol formation, Jusan andesitic formation and Palgongsan granite is distinguished by mineralogical and chemical compositions. The Concentration of the majority of solutes in groundwaters of Haman and Panyaweol formation is higher than in that of andesite and granite. Higher concentration of $HCO_3^{-}{\;}and{\;}SO_4^{2-}$ anions in the groundwater is peculiar. High concentrations of $Ca^{2+},{\;}Mg^{2+},{\;}HCO_3^{-}$ in the groundwaters of the sedimentary rocks result mainly from reaction of $CO^{2-}$ charged water with calcite and weathered feldspars. With the Piper diagram, the groundwaters of Haman formations are mainly plotted in $CaSO_4-CaCl_2$ type, whereas those of Panyaweol formations are plotted in the bothside of $Ca(HCO_3)_2{\;}and{\;}CaSO_4-CaCl_2$ type. Thses two different types of $Ca(HCO_3)_2{\;}and{\;}CaSO_4-CaCl_2$ groundwater were originated from dissolution of calcite($Ca(HCO_3)_2)$ and the oxidation of pyrite($CaSO_4-CaCl_2$), respectively. And it also is influenced by anthropogenic contamination. Three factors were extracted from the factor analysis for chemical data. Factor 1, controlled by $SO_4^{2-},{\;}Na^{+},{\;}Ca^{2+}$ and Fe, explains the dissolution of calcite, plagioclase and oxidation of pyrite. Factor 2, controlled by $HCO_3^{-}{\;}and{\;}Mg^{2+}$, mainly explains the dissolution of Mg-carbonates and dolomitization. Factor 3, controlled by $Cl^{-},{\;}K^{+}{\;}and{\;}NO_3^{-}$, is subject to the influence of artificial pollution including industrial waste water disposal. In this study area, some industrial complex which is close to Keumho river show the higher score of factor 3.

Production Characteristics and Post-depositional Influence of Iron Age Pottery from Chipyeongdong Site in Gwangju, Korea (광주 치평동 유적 출토 철기시대 토기의 제작특성과 매장환경 연구)

  • Jang, Sung-Yoon;Moon, Eun-Jung;Lee, Chan-Hee;Lee, Gi-Gil
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.157-167
    • /
    • 2012
  • This study aimed to interpret the provenance and firing temperature of pottery from Chipyeongdong site in Gwangju, Korea though mineralogical and geochemical methods and also investigated the post-depositional alteration of pottery in burial environments. It is also presumed that they were made of soils near the site because they have similar mineralogical composition and same geochemical evolution path. Based on the results of mineralogical analysis, the pottery samples are largely divided into 2 groups; $700^{\circ}C$ to $1,000^{\circ}C$ and 1,000 to $1,100^{\circ}C$. At some pottery fired at over $1,000^{\circ}C$, it is thought that the refinement of raw materials were processed to remove macrocrystalline fragments. However, it was found that phosphate in soil environments formed amorphous aggregates with Al and Fe within the pores and voids on pottery fired at the low temperature. It indicates the contamination of pottery after burial.

A Study on the Charateristic of the Groundwater Quality in Seoul (서울지역의 지하수 수질특성에 관한 연구)

  • 김익수;이재영;최상일
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.2
    • /
    • pp.54-63
    • /
    • 2004
  • For the purpose of finding out the distributions of groundwater uses, the effect of facilities on the parameter and the correlations among measurements, various statistical analysis were carried out with the data of groundwater quality measurements from January to December in 2002. (1) The rates of groundwater for drinking water were 10.5% in Yungcheon-Gu, 10.2% in Kangdong-Gu, and 9.9% in Eunpyung-Gu. The rates of other uses of groundwater were shown to be 58.1 %(786 wells) for civil defense emergency, 22.1% (299 wells) for contamination-concerning, 9.8%(133 wells) for water quality monitoring, consisting of 90% of all groundwater. (2) The 52.6% of groundwater for drinking were demonstrated to be appropriate while 91.9% for other uses-domestic, industrial, agricultural uses- were shown to be proper. (3) For drinking water, the maximum values of colar, turbidity, NH3-N, F, and Fe were 766.9 degree, 69.16NTU, 860.0 mg/l, 5.6 mg/l and 49.87 mg/l respectively. (4) Comparision of skewness and kurtosis for Seoul groundwater, pH was found to be 0.022 and -0.524, but the T.colony, color, turbidity, NH$_3$-N, NO$_3$-N, Fe and Mn respectively fumed out to be 11.641 and 174.324, 8.501 and 80.260, 5.675 and 32.821, 19.507 and 380.994, 3.323 and 17.436, 10.544 and 134.093 and 5.979 and 39.124. (5) In cases of drinking water wells for emergency, the results of statistical analysis showed that building year of the wells, depth and pumping rate didn't affect on whether it was proper for that use or not. It were shown that there were linear correlations between depth and NO3-N(-0.171) and F(0.332) while the correlation coefficients were 0.381 and -0.169 between the building year of well and depth and pumping rate respectively.

Occurrence and Influence of acid Leachate by Pyrite in Underground Rocks of Road Construction Field in the Miryang Area (밀양지역 도로건설 현장 지반암석내 분포하는 황철석에 의한 산성침출수 발생과 영향)

  • Chae, Sun Hee;Jeong, Chan Ho;Lee, Yu Jin;Lee, Yong Cheon;Shin, Sang Sik;Park, Jun Sik;Ou, Song Min
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.501-512
    • /
    • 2018
  • The acid leachate derived from the sulfide mineral such as pyrite can cause problems such as aging of infrastructure and environment contamination around the civil construction site. The purpose of this study is to assess the environmental effect of an acid leachate derived from pyrite in the Miryang area under road construction. In this study, 13 samples of situ core were used for the net acid generation (NAG) experiment. The chemical composition including pH, oxidation and reduction potential (ORP) and electrical conductance of water samples produced from the NAG test was analyzed. In additional, five polished thin sections of rock cores were made for electro microprobe analyses. In the results of the NAG tests, 7 samples showed lower values than pH 3.5. It strongly indicated that these areas are under the environmental and infrastructure damage by the acid leachate. The chemical type of the 7 samples was classified as the $Fe(Ca)-SO_4$ type, which is totally a different type compared to general groundwater. The concentration of total sulfur ranges from 0.004% to 12.5%. 6 rock samples are plotted on a potentially acid forming zone in the relation diagram between the total sulfide and NAG-pH. In conclusion, it is suggested that a protection method against an environmental demage and an infrastructure corrosions by the acid leachate should be prepared in all of areas under a road construction.

Evaluation of Groundwater Quality in Crystalline Bedrock Site for Disposal of Radioactive Waste (방사성폐기물 처분을 위한 결정질 기반암의 지하수 수질 평가)

  • Lee, Jeong-Hwan;Jung, Haeryong;Cheong, Jae-Yeol;Park, Joo-Wan;Yun, Si-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.275-286
    • /
    • 2014
  • This study evaluated the evolution stage and origin of chemical components of 12 boreholes at crystalline bedrock using multivariate statistical and groundwater quality analyses. Groundwater types are mostly belonged to Na(Ca)-$HCO_3$ and Ca-$HCO_3$ types, indicating that directly reaction of cation exchange ($Ca^{2+}{\rightarrow}Na^+$) prevailed. The degree of groundwater evolution is included the range from low to intermediate stage based on field and laboratory analytical conditions. As a result of multivariate statistical analysis, a typical indicator of groundwater contamination, $NO_3$-, has the positive correlation with $Na^+$ and $Cl^-$. The origin of sea spary ($Cl^-$) has the positive correlation with $Na^+$, $SO{_4}^{2-}$, $Mg^{2+}$, and $K^+$, while not correlation with $Ca^{2+}$, $Fe^{2+}$, $HCO_3{^-}$, $F^-$, and $SiO_2$. The concentration of $Cl^-$ and $NO_3{^-}$ belongs to general quality of groundwater and not exceeds over the Korean standard for drinking water. And the negative values of saturation index of minerals are calculated with chemical components in groundwater. Therefore, most of chemical components of groundwater in the study area are originated from natural process between rock and groundwater, whereas some of components are derived from sea spary and anthropogenic sources related to agricultural activities.

Changes of Nitrogen Fixation Activity and Heavy Metal Accumulation of Vicia amoena Community from Kumho Riverside (금호강유역 갈퀴나물군락의 중금속 축적과 질소고정 활성의 변화)

  • 박태규;박용목;송은주;송승달
    • The Korean Journal of Ecology
    • /
    • v.22 no.3
    • /
    • pp.131-137
    • /
    • 1999
  • This study was carried out to investigate the activity of nitrogen fixation and accumulation of heavy metal and inorganic matter in Vicia amoena community at lower region in Kumho riverside, including Youngchon, Chimsangyo, Paldalgyo, Talseochon and Kumhogyo. The contents of inorganic matter and heavy metal of Kumho riverside soil increased in the down stream in each organ of the plant growing in the riverside. Generally, V. amoena community showed rapid growth of shoot and high value of Top/Root ratio. V. amoena community showed higher water content of shoot at late growth stage and higher chlorophyll content. The root nodule of V. amoena community appeared in April and increased by 0.30, 0.27, 0.24, 0.06 and 0.14 g/plant, and nitrogen fixation activity of nodule attained 20.1, 16.8, 15.4, 8.5 and 5.3 μmol·C₂H₄·g fw nodule/sup -1/·h/sup -1/ for non-contaminated area Youngchon, Chimsangyo, Paldalgyo, Talseochon and Kumhogyo, respectively, in June:. Nodule formation and nitrogen fixation activity were reduced in the down stream by the soil contamination and heavy metal accumulation and showed minimum values. at Talseochon and Paldalgyo. V. amoena showed growth adaptation against heavy metal toxicity by restricting heavy metal such as Pb, Cu, Zn, Fe from transport, and by accumulating high Ca ion in shoot, nitrogen and phosphorus in root at late growth stage than those at early one, respectively, but total heavy metal per plant showed higher values in shoot than those in root by high T/R ratio of plant growth.

  • PDF

Introduction of Clean Techniques for Trace Metal Analysis in Seawater (해수 중의 미량금속 분석을 위한 청결기술의 소개)

  • Kim, Kyung-Tae;Kim, Eun-Soo;Ra, Kong-Tae;Moon, Deok-Soo;Kim, Hyeon-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.2
    • /
    • pp.157-164
    • /
    • 2009
  • The metals such as Al, Ag, Au, Cu, Cd, Co, Fe, Ni, Pb, Zn, etc are present at very low concentration in seawater and are classified as so-called trace metals. Whiles some of them are used in metabolism of living organism as a micronutrient, they may show toxic effects on organisms in case of a limited threshold concentration of them Plenty of studies on trace metals have been performed bemuse trace metals have a persistent influence and an adverse effect on marine environment and ecosystem. For long years, when the concentration of trace metals in natural waters such as seawater and fresh water are measured with high precision and accuracy, some systematic errors have been recognized to be present in measurements. Since 1975 in US and European countries, the measured concentration of trace metals in seawater have been found to be lower by factors of 10-1,000 than the previous data of trace metals measurements and the vertical profiles of the measurements have been shown to reflect well-known biological, physical and geochemical processes. These results are attributed to great advances in analytical instrumentation and methodology for trace metals measurements. Precautions against the contamination of samples are required to be taken in the process of sampling, storage, and analysis of samples. However, in Korea, erroneous data of trace metals with regard to ocean and marine environment related survey and investigations are reported The lock of exact understanding and information regarding precautions in sampling, storage and analysis of samples lead to the deterioration of data quality, especially in the analysis of trace metals. The major procedures to obtain the accurate data of trace metals in natural waters are introduced for applying to the study and assessment of marine environments.

  • PDF