• 제목/요약/키워드: Fe:Ni RATIO

검색결과 275건 처리시간 0.022초

거대고리 화합물을 매질로한 에멀존 액체막게에 의한 중금속이온의 분리 (Separation of the Heavy Metals by macrocycles- mediated Emulsion Liquid Membrane Systems)

  • 정오진
    • 한국환경과학회지
    • /
    • 제2권1호
    • /
    • pp.61-72
    • /
    • 1993
  • [에멀존]계에서 거대고리화합물에 의한 효과적인 수송현상을 두가지 관점에서 논의하였다. 하나는 중금속이온($Cd^{2+}$. $Pb^{2+}$$Hg^{2+}$)을 토루엔막으로 추출하는 경우.만일 금속=거대고리 화합물의 상로작용이 크다면 이 추출효과는 증가한다. 주번째 토루엔-경꼐면에서, 금속이온을 정량적으로 용리시키기 위해서는 금속이온 -Re-cieving Phase와 금속이온-거대고리화합물 사이의 상호작용에 대한 LogK의 사가 충분히 커야한다 첫번째는 거대고리 화합물의 주개원자, 치환제, 그리고 공동반경을 고려함으로써 해결된다. 이 연구의 결과들은 이론과 잘 일치하며, 시료용액의 종류는 에멀존망에 의한 금속이온의 수송현상에 영향을 준다.$SCN^-$,$1^-$$Br^-$이온과 같은 $A^-$이온을 사용할 경구, 수송순서는 $A^-$ 이온의 용매화순서의 크기에 일치하며, 용해도의 차이때문에 금속이온의 소송능력은 Receiving Phase의 화학종 농도의 크기에 영향을 받는다. 이 연구에서는 적당한 실험조건하에서 조절된 토루엔막을 사용함으로써 $Cd^{2+}$, $Pb^{2+}$, 및 $Hg^{2+}$ 이온의 혼합물로부터 각각의 단일이온들을 효과적으로 분리농축할 수 있었다. 그리고 $Cu^{2+}$,$Ni^{2+}$,$Zn^{2+}$,$Fe^{2+}$, 이온들은 중금속이온들을 분히 농축하는데 부분적으로 방해를 하였다. 그러나 알칼리 및 알칼토금속이온은 방해하지 않았다.

  • PDF

황해 중앙부 해역 니질 퇴적물의 지화학적 특성 및 퇴적률 (Rate of Sediment Accumulation and Geochemical Characteristics of Muddy Sediment in the Central Yellow Sea)

  • 윤정수;김여상
    • 한국제4기학회지
    • /
    • 제16권1호
    • /
    • pp.1-16
    • /
    • 2002
  • 황해 중앙부 해역에 분포하는 니토대의 공급지와 퇴적작용을 파악할 목적으로 이곳 니질 퇴적물에서 채취한 4개의 시료에서 분석한 화학조성과 기존의 황하, 양자강 및 한반도의 금강 퇴적물 등의 지화학적 자료와 비교하고 퇴적률을 추정하였다. 연구지역 표층 퇴적상의 분포는 사질 퇴적상이 분포하는 동쪽지역, 니토대가 분포하는 서쪽지역, 중앙부지역에 남북방향의 대상분포를 보이는 혼합 퇴적상으로 구분된다. 퇴적물내 탄산염 함량은 2.B~10.5%의 범위를 보이고 사질 퇴적물이 분포하는 동쪽보다 니질 퇴적물이 분포하는 서쪽으로 갈수록 점차 증가하는 경향을 보인다 Pb-210 동위원소를 이용한 연구지역 니질 퇴적물의 퇴적률은 0.21~0.68cm/yr 혹은 0.176~0.714 g/$\textrm{cm}^2$.yr의 범위를 보였다. 황하와 가까운 산둥반도 동쪽 정점 CY96010에서 퇴적률은 0.68cm/yr 혹은 0.714g/$\textrm{cm}^2$. yr의 높은 값을 보이고, 황해 중앙부 해역 정점 CY96008과 CY96002에서 퇴적률은 0.21~0.23cm/yr혹은 0.176~0.220g/$\textrm{cm}^2$. yr로 낮은 값을 보여 황하기원 퇴적물이 황해 중앙부 해역까지 이동되어 퇴적되고 있음을 의미한다. 황해 중앙부 해역 니질 퇴적물의 화학조성 중 Ca, Na, Sr, Ho, La, Tb 및 Ta원소함량과 Ca/Ti비는 양자강 퇴적물보다는 높고, 황하보다는 낮거나 이와 비슷한 함량 변화 경향을 보였고, Fe, Ti, Ni, Co, Cr, Cu, Pb, Sc, Ce, Nd, Sm, Eu, Gd 및 Dy 원소함량은 황하 퇴적물 보다는 높고, 양자강보다는 낮으나 이와 비슷한 함량변화를 보였다. 반면, Mn, K 및 Sr 원소는 금강과 황해 동쪽의 퇴적물보다는 낮으나 이와 비슷한 함유량을 보였고, Zn, Rb, Cd, U, Cs 및 Li 원소는 비교지역 보다 높은 함량치를 보였다. 따라서 황해 중앙부 해역에 분포하는 니질 퇴적물의 공급지는 황하 및 고황하기원 물질이고, 이외에 양자강과 금강으로부터 공급된 물질과 황해 난류수에 의해 운반된 생물기원 물질의 영향도 다소 있는 것으로 해석된다.

  • PDF

안동 사문암지대의 중금속 함유 낙엽의 분해 (Decomposition of Leaf Litter Containing Heavy Metals in the Andong Serpentine Area, Korea)

  • 류새한;김정명;차상섭;심재국
    • 한국환경생태학회지
    • /
    • 제24권4호
    • /
    • pp.426-435
    • /
    • 2010
  • 본 연구는 사문암 토양의 화학적 성질과 토양미생물량 및 토양효소 등 토양의 생물학적 활성을 대조구의 비사문암 토양과 비교하고, 사문암과 비사문암에서 공통으로 서식하는 새(Arundinella hirta)와 억새(Miscanthus sinensis var. purpurascens)의 낙엽이 입지가 다른 사문암지역과 비사문암 지역에서 분해될 때 분해율의 차이가 어떻게 유발되는지 9개월 동안 야외에서 교차 실험하였다. 사문암 토양은 비사문암 토양에 비하여 높은 pH, 낮은 dehydrogenase 와 urease활성을 나타내었으며 alkaliphosphatase의 활성은 높았다. 두 토양에서 microbial biomass-C와 N의 차이는 유의하지 않았으나 사문암 토양에서 microbial biomass-N함량이 더 높게 나타나 비사문암 토양에서 보다 낮은 토양의 C/N을 나타내는 원인이 되었다. 사문암지역에서의 낙엽분해실험에서는 사문암지역에서 획득한 새와 억새 낙엽이 각각 39.8%, 38.5%의 중량감소를 보였으며, 비사문암 토양에서 획득한 낙엽은 각각 41.1%, 41.7%의 중량감소를 나타내었다. 비사문암지역에서의 낙엽분해실험에서는 사문암낙엽이 46.8%, 42.2% 그리고 비사문암낙엽은 44.8%, 37.4%의 중량감소를 각각 보였다. 이러한 결과는 중금속을 포함하는 토양의 영향보다는 낙엽의 질적 차이가 분해율에 더 큰 영향을 미쳤음을 나타내준다. 일반적으로 낮은 C/N을 갖는 낙엽이 더 빨리 분해된다는 결과와는 달리 낮은 C/N을 갖는 사문암낙엽의 분해가 느린 것은 낙엽에 포함된 중금속의 저해가 낙엽의 C/N이나 lignin/N과 같은 낙엽의 질적 차이에서 유발되는 낙엽분해의 저해보다 큰 영양을 미친다는 결과를 보여주었다. 또한 낙엽분해가 진행되는 동안 낙엽내의 Cr, Ni과 Mg, Fe의 농도는 점차 증가하였으며 이러한 경향은 사문암지역에서 현저하였다.

구룡산(九龍山)(옥천(決川)) 함(含)우라늄 흑색(黑色) 점판암(粘板岩)의 지화학(地化學) 및 성인(成因) (Geochemistry and Genesis of the Guryonsan(Ogcheon) Uraniferous Back Slate)

  • 김종환
    • 자원환경지질
    • /
    • 제22권1호
    • /
    • pp.35-63
    • /
    • 1989
  • 구룡산(九龍山)(또는 옥천(沃川)) 함(含)우라늄 흑연질점판암(黑鉛質粘板岩)은 옥천대(沃川帶) 서북부(西北部)에 따라 증상(層狀) 또는 부딘상(狀)으로 90km이상(以上) 연장(延長) 분포(分布)한다. 함(含)우라늄점판암(粘板岩)의 오토레디오그라프에 나타나는 퇴적(堆積), 속성(續成), 변성구조(變成構造)는 우라늄과 동시퇴적물(同時堆積物)로서 속성작용과정(續成作用過程)에서 전혀 이동(移動)하지 않고 황성변성(廣域變成) 초기(初期)에 제자리에서 미립(微粒)우라니나이트로 재결정(再結晶)하였음을 보여준다. 동시(同時)에 유기물(有機物)은 미세환장흑연(微細環狀黑鉛)으로 되었다. 라미나구조(構造)의 발달(發達)과 평균(平均) 19.64% C, 2.32% S의 함유(含有)는 함(含)우라늄흑니(黑泥) 퇴적(堆積)의 일반조건(一般條件)으로서의 극(極)히 낮은 퇴적화(堆積比), 고유기물함유(高有機物含有), 염기성황경등을 충족(充足)하였으며 Th/U가 0.07로서 해수원(海水源)임을 뜻한다. 지역별(地域別) CaO, $P_2O_5$의 평균치(平均値)가 매우좁은 범위(範圍)의 일정치(一定値)이며 높은 CaO 평균치(平均値)를 나타내어 전퇴적(全堆積)분지를 통(通)하여 동일(同一) pH(7.8-8.0)조건(條件)의 환경(環境)에서 퇴적(堆積)하였음을 나타낸다. 함(含)우라늄점판암(粘板岩)은 같은 성인(成因)의 타산장(他産狀)에 비(比)하여 미량원소(微量元素) 부화도(富化度)가 매우 높다. 고부화(高富化)의 중요(重要)한 원인(原因)으로서 미량원소(微量元素)의 소스(source)인 해수(海水)의 주기적(週期的) 교체(交替)가 요구(要求)되는데 사이크릭퇴적구조(堆積構造)는 그러한 현상(現象)을 뒷받침하여 준다. 흑니(黑泥)의 성인별(成因別) 구성광물(構成鑛物)과 원소(元素)의 수반관계(隨伴關係)에서 쇄설성광물(鑛物)에는 Si, Al, K, Na, Ti, Zr, Th, Be, B, Li, 유기물(有機物)후락숀에, U, Ni, Cu, Co, Zn, Ag, Mo, Pb, Sn, Cd, S, Fe, V, Cr, Y, 탄산염광물(炭酸鹽鑛物)에 Ca, Mg, Mn, P, Ba가 높은 상관(相關)을 나타낸다. 유기물(有機物)의 우라늄고정심전능력(固定沈澱能力)에 있어 사프로페릭(Sapropelic)형(型)보다 휴믹(Humic)형(型)에서 더 높다. 육성식물(陸性植物)의 분해물(分解物)인 휴무스(Humus)는 고대성(古生代) 중기(中期)에 출현(出現)한다. 우라늄 함유(含有) 흑니(黑泥)는 이 시대(時代)의 형성물(形成物)로서 이런 형(型)의 광상(鑛床)은 생물상(生物相)의 진화(進化)에 규제(規制)된 광화작용(鑛化作用)의 산물(産物)이다.

  • PDF

노화에 따른 Zr-Ni계 지연관의 열 특성 및 화학적 구조 변화에 관한 연구 (A Study on change in thermal properties and chemical structure of Zr-Ni delay system by aging)

  • 박병찬;장일호;김선태;황택성;이승호
    • 분석과학
    • /
    • 제22권4호
    • /
    • pp.285-292
    • /
    • 2009
  • 장기 저장된 탄약은 화공품의 노화에 따른 절심현상(연소 중단)으로 인해 불발 등의 악작용이 발생하게 된다. 탄약에 주로 사용되는 화공품은 초기 에너지를 부여하는 뇌관 화약과 뇌관 화약의 에너지를 받아 지연제를 점화시켜주는 점화제, 일정 시간 동안 연소를 지연시켜주는 지연제 등을 사용한다. 이러한 형태의 탄약에는 뇌관화약, 점화제, 지연제의 순으로 충전되는데 충전된 순서대로 에너지가 전달되어 기능을 발휘하게 된다. 탄약의 절심 현상은 점화제의 연소중단, 점화제로부터 지연제로의 불충분한 에너지 전달, 지연제의 연소 중단 등에 의해 발생하는데, 이러한 현상이 나타나는 요인으로는 각 구성 성분의 낮은 순도,부적절한 혼합비, 입자성 성분의 입자 크기 및 분포, 바인더의 종류, 각 구성 성분의 혼합방법, 장기저장시 흡입된 수분에 의한 구성성분의 가수분해 및 고온에 의한 구성 성분의 화학적 변화 등이 의심된다. 본 연구의 목적은 Zr-Ni계 지연관 결합체를 장기 보관했을 때 점화제 및 지연제에서 나타나는 연소중단현상의 원인을 규명하는 것이다. 이를 위해 본 연구에서는 현장에서 일어나는 절심현상과 일치하는 시험법을 개발하였고, 장-흐름 분획법(field-flow fractionation, FFF)을 이용하여 입자성 성분의 입자 크기와 분포를 조사하였으며, 장기보관에 의한 점화제와 지연제의 화학적인 변화 메커니즘을 조사하기 위하여 열분석(differential scanning calorimetry) 및 XRD, XPS (X-ray diffractometry, X-ray photoelectron Spectroscopy)분석을 수행하였다. XPS 와 XRD data 에 의하면, 점화제의 경우 산소의 1s 결합에너지 위치에서 M-O,M-OH 피크들이 관찰되었다. 이는 산화에 의한 새로운 생성물이 생성되었음을 의미한다. 즉 점화제의 산화에 의해 방출 열량이 감소하여 절심(연소 중단) 현상이 야기된다는 사실을 확인할 수 있었다.