• Title/Summary/Keyword: Fe:Ni RATIO

Search Result 275, Processing Time 0.025 seconds

Preparation and Characterization of Fe/Ni Nanocatalyst in a Nucleophilic Solvent for Anion Exchange Membrane in Alkaline Electrolysis (친핵성 용매 중에서 자발적 환원반응에 의한 음이온 교환막 수전해용 Fe/Ni 나노 촉매의 제조 및 특성)

  • DAI, GUANXIA;LU, LIXIN;LEE, JAEYOUNG;LEE, HONGKI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.293-298
    • /
    • 2021
  • To synthesize Fe/Ni nanocatalysts loaded on carbon black, Iron(II) acetylacetonate and nickel (II) acetylacetonate and were reduced to Fe and Ni metallic nanoparticles by a spontaneous reduction reaction. The distribution of the Fe and Ni nanoparticles was observed by transmission electron microscopy, and the loading weight of Fe/Ni nanocatalysts on the carbon black was measured by thermogravimetric analyzer. The elemental ratio of Fe and Ni was estimated by energy dispersive x-ray analyzer. It was found that the loading weight of Fe/Ni nanoparticles was 6.23 wt%, and the elemental ratio of Fe and Ni was 0.53:0.40. Specific surface area was measured by BET analysis instrument and I-V characteristics were estimated.

The Effects of Heat Treatment Temperature on Mechanical Property of 93W-6.3Ni-0.7Fe Heavy Alloy (93W-6.3Ni-0.7Fe 중합금에서 열처리온도에 따른 기계적 성질변화)

  • 김은표
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.42-49
    • /
    • 1998
  • A study on the improvement of the impact energy in 93W heavy alloy with a Ni/Fe ratio of 9/1 has been carried out as a function of heat treatment temperature. The obtained results were compared to that of the traditional alloy system in which the Ni/Fe ratio is 7/3 or 8/2. With increasing heat treatment temperature from 1150 to 125$0^{\circ}C$, the impact energy of the alloy with the Ni/Fe ratio of 9/1 is remarkably increased from 42 to 72 J, which is higher than that of traditional alloy, up to 118$0^{\circ}C$ and then saturated. Fracture mode was also changed from brittle W/W boundary failure to W cleavage. The temperature showing the dramatic shrinkage by dilatometric anaysis of the heavy alloy with Ni/Fe ratio of 9/1 was found to be 1483 $^{\circ}C$, which is higher than that (146$0^{\circ}C$) of the heavy alloy with Ni/Fe ratio of 7/3. Auger Electron Spectroscopy showed that the segregation of impurities, such as S, P, and C in W/W grain boundary was considerably decreased with increasing heat treatment temperature from 1150 to l18$0^{\circ}C$. From the above results, it was found that the impurity segregation in W/W grain boundary played an important role on the decrease of impact properties, and the heat treatment temperature should be appropriately chosen, as considering the Ni/Fe ratio of the alloy, in order to get good impact properties.

  • PDF

The study of magnetoresistance and magnetic properties in [(CoO/NiO)/NiFe/Cu/NiFe] spin-valve thin films ([(CoO/NiO)/NiFe/Cu/NiFe] spin-valve 박막에서의 자기저항효과와 자기적 특성에 대한 연구)

  • 현준원
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1060-1065
    • /
    • 1996
  • We have studied the magnetoresistance phenomena on spin valve thin films of antiferromagnetic NiO/CoO. Interlayer coupling oscillates between the antiferrocoupling and ferrocoupling with the variation of Cu thickness. The exchange coupling strength between NiO (antiferromagnetic) and NiFe(ferromagnetic) as a function of NiO texture and interface roughness is investigated by CoO insertion. CoO has significantly higher anisotropy in the (111) plane and interface roughness. It seems that the MR-ratio is increased by CoO inserted films. From the AFM and XRD data, the increase of MR-ratio and exchange field is influenced by the roughness of CoO.

  • PDF

Effects of Ni and Rh on the Structural Changes in Synthesis of the Spinel Type $Fe_3O_4$ (Spinel형 $Fe_3O_4$의 합성시 구조변화에 미치는 Ni 및 Rh의 영향)

  • Park Young Goo
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.2
    • /
    • pp.40-47
    • /
    • 1998
  • This study describes a synthesis of spinel-type $Fe_3O_4$ for decomposition of carbon dioxide, using $Fe_3O_4$ $7H_2O$ and NaOH, at $40^{\circ}C$ for 20 h. with change of their chemical equivalent ratio from 0.50 to 0.75, 1.00, 1.25 and 1.50, respectively. Addition of 0.1-1.00 mole percentage $NiCl_2,\;RhCl_3$ to the particles of $Fe_3O_4$, Prepared by reacting chemical equivalent ratio 1.00, afforced spinel $Fe_3O_4$. The structure of $Fe_3O_4$ and $NiCl_2,\;RhCl_3$-added $Fe_3O_4$ was investigated with XRD and SEM, respectively.

  • PDF

Synthesis and electromagnetic properties of FeNi alloy nanofibers using an electrospinning method

  • Lee, Young-In;Choa, Yong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.5
    • /
    • pp.218-222
    • /
    • 2012
  • FeNi alloy nanofibers have been prepared by an electrospinning process followed by air-calcination and H2 reduction to develop electromagnetic (EM) wave absorbers in the giga-hertz (GHz) frequency range. The thermal behavior and phase and morphology evolution in the synthetic processes were systematically investigated. Through the heat treatments of calcination and H2 reduction, as-spun PVP/FeNi precursor nanofiber has been stepwise transformed into nickel iron oxide and FeNi phases but the fibrous shape was maintained perfectly. The FeNi alloy nanofiber had the high aspect ratio and the average diameter of approximately 190 nm and primarily composed of FeNi nanocrystals with an average diameter of ~60 nm. The FeNi alloy nanofibers could be used for excellent EM wave absorbing materials in the GHz frequency range because the power loss of the FeNi nanofibers increased up to 20 GHz without a degradation and exhibited the superior EM wave absorption properties compared to commercial FeNi nanoparticles.

The Giant Magnetoresistance Properties of CoFe/Cu/NiFe Pseudo Spin Valve (CoFe/Cu/NiFe Pseudo스핀밸브의 자기저항 특성)

  • Choi, W.J.;Hong, J.P.;Kim, T.S.;Kim, K.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.6
    • /
    • pp.212-217
    • /
    • 2002
  • The pseudo spin valve with a structure of Tl/CoFe(t $\AA$)/Cu(30 $\AA$)/NiFe(50 $\AA$)/Ta, showing giant magnetoresistance properties by utilizing coercivity difference between only two soft ferromagnetic layers were produced by d.c UHV magnetron sputtering system. In pseudo spin valve Ta/CoFe/Cu/NiFe/Ta, the magnetic and magnetoresistance properties with change of CoFe thickness were investigated. When the thickness of CoFe was 60 $\AA$, a typical MR curve of pseudo spin valve structure was obtained, showing MR ratio of 3.8 cio and the coercivity difference of 27.4 Oe with a sharp change of hard layer switching. When the CoFe thickness was varied from 20 to 100 $\AA$, coercivity difference between two layers was increased to 40 $\AA$. and decreased to 100 $\AA$ gradually. It is thought the change in coercivity of hard layer was due to the crystallinity and magnetostriction of thin CoFe layer. In order to improve the MR property in CoFe/Cu/NiFe trier layer structure, CoFe layer with change of 2-20 $\AA$ thick was inserted between Cu and NiFe. When the thickness of CoFe was 10 $\AA$, MR ratio was 6.7%, showing excellent MR property. This indicates 50 % higher than that of CoFe/Cu/NiFe pseudo spin valve.

Electric Properties of NTC Thermistor with $Mn_{3}O_{4}-NiO-Fe_{2}O_{3}$ system for Mobile Communication Telephone (이동통신 단말기용 $Mn_{3}O_{4}-NiO-Fe_{2}O_{3}$계 NTC 써미스터의 전기적 특성)

  • Yoon, Joong-Rak;Kim, Jee-Gyun;Lee, Heon-Yong;Lee, Seok-Won
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.506-508
    • /
    • 2000
  • Oxide of the form $Mn_{3}O_{4}-NiO-Fe_{2}O_{3}$ present properties that make them useful as multilayer chip NTC thermistor for mobile phone NTC thermistor electric properties of $Mn_{3}O_{4}-NiO-Fe_{2}O_{3}$ system has been measured as a function of temperature and composition. In $Mn_{3}O_{4}-NiO-Fe_{2}O_{3}$ composition, it can be seen that resistivity and B-constant were increased as the ratio of $Mn_{3}O_{4}/F_{2}O_{3}$ and $Mn_{3}O_{4}$/NiO was increased. In particular, resistance change ratio (${\Delta}R$), the important factor for reliability varied within ${\pm}1%$, indicating the compositions of these products could be available for mobile phone.

  • PDF

CoFe Layer Thickness and Plasma Oxidation Condition Dependence on Tunnel Magnetoresistance (CoFe의 삽입과 산화조건에 따른 자기 터널 접합의 자기저항특성에 관한 연구)

  • 이성래;박병준
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.196-201
    • /
    • 2001
  • The dependence of CoFe interfacial layer thickness and plasma oxidation condition on tunneling magnetoresistance (TMR) in Ta/NiFe/FeMn/NiFe/Al$_2$O$_3$/NiFe/Ta tunnel junctions was investigated. As the CoFe layer thickness increases, TMR ratio rapidly increases to 13.7 % and decreases with further increase of the CoFe layer thickness. The increase of TMR with the CoFe thickness up to 25 was thought to be due mails to the high spin-polarization of CoFe. The maximum MR of 15.3% was obtained in the Si(100)/Ta(50 )/NiFe(60 )/FeMn(250 )/NiFe(70 )/Al$_2$O$_3$/NiFe(150 )/Ta(50 ) magnetic tunnel junction with a 16 Al oxidized for 40 sec using a Ar/O$_2$ (1:4) mixture gas.

  • PDF

Effect of μ-Phase on Microstructural Change of W-Ni-Fe Heavy Alloys (W-Ni-Fe 중합금의 미세조직 변화에 대한 μ-phase의 영향)

  • Kim, Dae-Geon;Kim, Eun-Pyo;Kim, Yeong-Do
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.16-20
    • /
    • 2002
  • In this study, the 95W heavy alloys of 3/7, 5/5 and 7/3 of Ni/Fe ratio were sintered at the temperature range between 1420 and $1480^{\circ}C$ for 1h and their microstructures were discussed for an effect of the ${\mu}$-phase $(Fe_7W_6)$ on the microstructure. The ${\mu}$-phase was observed in the only 95W-1.5Ni-3.5Fe alloy of 3/7 and it is thought to be formed and grown from the surface of the W particle. The W particle was surrounded with the ${\mu}$-phase and there were only the W particles and this phase without Ni-Fe-W matrix at the most part. The ${\mu}$-phase changed the interphase structure in the alloy and the grain growth of the W was suppressed because of interrupting the solution-reprecipitation of the W. The W content in the matrix was considered to be lowered due to the interruption of the solution-reprecipitation and the formation of the ${\mu}$-phase in the .

Magnetoresistive heads with dual exchange bias using $NiFe/TbCo/Si_3N_4$ thin films (자기 저항 헤드의 이중 자기 교환 바이어스를 위한 $NiFe/TbCo/Si_3N_4$ 박막제조)

  • 김영채;오장근;조순철
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.3
    • /
    • pp.239-243
    • /
    • 1994
  • $NiFe/TbCo/Si_3N_4$ thin films were fabricated, which can be employed as dualOongitudinal and transverse) biased magnetoresistive elements utilizing surface magnetic exchange at the interface of NiFe/TbCo films. When Tb area percent was 36 % and substrate bias was not applied, magnetic exchange fields of 100~180 Oe were obtained. The thicknesses of NiFe, TbCo and $Si_3N_4$(Protective layer) were $470\;{\AA},\;2400\;{\AA}\;and\;600\;{\AA}$, respectively. Magnetoresistance ratio of 1.45 % was obtained using NiFe films fabricated with 1000 W power and 2.5 mTorr of Ar pressure. The MR ratio of microstructured elements was reduced to 1.31 % and the MR response curves were shown not to saturate due to demagnetizing fields of the elements. When elements were fabricated with $36^{\circ}$ of misalignment with respect to the exchange field direction using films having 150 Oe exchange field, MR response curve was shifted by 85 Oe, and the operating point of the device shifted to the linear region of the response. Also, the Barkhausen noise was eiminated due to longitudinal bias field originating from the exchange field.

  • PDF