• Title/Summary/Keyword: Fe(III)

Search Result 563, Processing Time 0.031 seconds

Study on Metal Cupferrate Complex (Part II) Spectrophotometric Determination of Fe(III)-Cupferrate Composition (Metal Cupferrate Complex 에 關한 硏究 (第 2 報) Spectrophotometry 에 의한 Fe(III)-Cupferrate의 化學組成의 決定)

  • Si-Joong Kim;Doo-Soon Shin
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.280-282
    • /
    • 1963
  • Fe (III)-cupferrate composition in chloroform phase was determined by molar ratio method, continuous variation method and slope ratio method spectrophotometrically at 325m$\mu$ and 385m$\mu$ wavelength. At both wavelength, compositions of the complex were Fe$Cupf_3$.

  • PDF

Degradation Mechanisms of TCE in Cement/Fe(II) Systems (시멘트/Fe(II) 시스템에서의 TCE 분해 기작)

  • Lee, Yun-Mo;Kang, Wan-Hyup;Choi, Won-Ho;Hwang, In-Sung;Park, Joo-Yang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.778-782
    • /
    • 2007
  • This study investigated the dechlorination mechanisms of TCE by Fe(II) associated with cement. Batch slurry experiments were peformed to investigate the behaviors of selected ions; Fe(II), Fe(III), $Ca^{2+}$, $SO_4^{2-}$ in cement/Fe(II) system. The kinetic experiments of TCE in cement/Fe(II) systems showed that injected Fe(II) was mostly sorbed on cement within 0.5 day and 90% of injected 200 mM sulfate was sorbed on cement within 0.5 day when $[TCE]_0$ = 0.25 mM and $[Fe(II)]_0$ = 200 mM. The kinetic experiments of TCE in hematite/CaO/Fe((II) systems were conducted for simulation of cement/Fe(II) system. Calcium oxide that is one of the major components in cement hydration reactions or has a reactivity in limited conditions. Hematite assumed the ferric iron oxide component of cement. The reactivities observed in hematite/CaO/Fe(II) system were comparable to those reported for cement/Fe(II) systems containing similar molar amounts of Fe(II). The behavior of Fe(II) and $SO_4^{2-}$ sorbed on solid phase at an early stage of reaction in hematite/CaO/Fe(II) system was similar to that of cement/Fe(II) system. Ferric ion was released from hematite at an early period of reaction at low pH. The experimental evidence of kinetic test using hematite/CaO/Fe(II) system implies that the reactive reductant is a mixed-valent Fe(II)-Fe(III) mineral, which may be similar to green rust. Fe(II) sorbed on cement can be converted to new mineral phase having a reactivity such as Fe(II)-Fe(III) (hydr)oxides in cement/Fe(II) systems.

Preliminary Study on Arsenic Speciation Changes Induced by Biodegradation of Organic Pollutants in the Soil Contaminated with Mixed Wastes (유기물분해에 따른 유류${\cdot}$중금속 복합오염토양내 비소화학종 변화의 기초연구)

  • 이상훈;천찬란;심지애
    • Economic and Environmental Geology
    • /
    • v.36 no.5
    • /
    • pp.349-356
    • /
    • 2003
  • As industrial activities are growing, pollutants found in the contaminated land are getting diverse. Some contaminated areas are subject to mixed wastes containing both organic and inorganic wastes such as hydrocarbon and heavy metals. This study concerns with the influence of the degradation of organic pollutants on the coexisting heavy metals, expecially for As. As mainly exists as two different oxidation state; As(III) and As(V) and the conversion between the two chemical forms may be induced by organic degradation in the soil contaminated by mixed wastes. We operated microcosm in an anaerobic chamber for 60 days, using sandy loam. The soils in the microcosm are artificially contaminated both by tetradecane and As, with different combination of As(III) and As(V); As(III):As(V) 1:1, As(III) only and As(V) only. Although not systematic, ratio of As(III)/As(Total) increase slightly at the later stage of experiment. Considering complicated geochemical reactions involving oxidation/reduction of organic materials, Mn/Fe oxides and As, the findings in the study seem to indicate the degradation of the organics is connected with the As speciation. That is to say, the As(V) can be reduced to As(III) either by direct or indirect influence induced by the organic degradation. Although Fe and Mn are good oxidising agent for the oxidation of As(III) to As(V), organic degradation may have suppressed reductive dissolution of the Fe and Mn oxides, causing the organic pollutants to retard the oxidation of As(III) to As(V) until the organic degradation ceases. The possible influence of organic degradation on the As speciation implies that the As in mixed wastes may be have elevated toxicity and mobility by partial conversion from As(V) to As(III).

A Study on the Oxidation Reaction of Iron (II) Sulfate by Dry and Wet Process (황산제1철의 乾濕式에 의한 酸化反應에 對한 硏究)

  • Soo Duk Suhl;Joo Kyung Sung;Yong Kil Whang
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.2
    • /
    • pp.121-124
    • /
    • 1977
  • A study on the formation of black iron oxide was carried in differents of Fe(III), Fe(II) ion in the aqueous solution that iron(II) sulfate was calcined under various temperature and leached in water. The results obtained was follows; (1) It was found that the sample calcined in an electric muffle furnace maintained at $500^{\circ}C$ for 1 hour and leached in water was equivalent mole (Fe(III) /Fe(II) = 1) in 20% aqueous solution. (2) When the above mentioned solution was hydrolyzed at pH range of 7 to 8 for 2 hours at $100^{\circ}C$, 93% and over of iron was recovered in the form of ${\alpha}-Fe_3O_4$ with a black colour.

  • PDF

BTEX-contaminated Groundwater Remediation with Modified Fenton Reaction using Environmental Friendly Chelating Agent (친환경 착제가 적용된 modified Fenton 공정을 이용한 BTEX로 오염된 지하수의 복원)

  • Kwon, Yong-Jae;Jo, Young-Hoon;Jung, Jae-Gu;Kong, Sung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.638-646
    • /
    • 2014
  • The effect of in-organic chelating agents with Fe(II) and Fe(III) in modified Fenton was evaluated to degradation BTEX (benzene, toluene, ethylbenzene, xylene). Citric acid and pyrophosphate were used in experimentals and an optimum chelating agent for BTEX degradation was determined. In $H_2O_2$/Fe(III)/citric acid, degradation of BTEX was decreased when concentration of citric acid was increased. In $H_2O_2$/Fe(III)/pyrophosphate, degradation of BTEX was increased when concentration of pyrophosphate was increased and degradation for BTEX was relatively high compared with $H_2O_2$/Fe(III)/citric acid. In $H_2O_2$/Fe(II)/chelating agents, degradation for BTEX was high and pH variation was minimized when molar ratio of Fe(II) and citric acid was 1:1. Optimum molar concentration of Fe(II), citric acid and $H_2O_2$ were 7 mM, 7mM and 500 mM for degradation of 100 mg/L of benzene to obtain best efficiency of $H_2O_2$, least precipitation of iron and best degradation.

Anodic Stripping Voltammetric Detection of Arsenic(III) at Platinum-Iron(III) Nanoparticle Modified Carbon Nanotube on Glassy Carbon Electrode

  • Shin, Seung-Hyun;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3077-3083
    • /
    • 2010
  • The electrochemical detection of As(III) was investigated on a platinum-iron(III) nanoparticles modified multiwalled carbon nanotube on glassy carbon electrode(nanoPt-Fe(III)/MWCNT/GCE) in 0.1 M $H_2SO_4$. The nanoPt-Fe(III)/MWCNT/GCE was prepared via continuous potential cycling in the range from -0.8 to 0.7 V (vs. Ag/AgCl), in 0.1 M KCl solution containing 0.9 mM $K_2PtCl_6$ and 0.6 mM $FeCl_3$. The Pt nanoparticles and iron oxide were co-electrodeposited into the MWCNT-Nafion composite film on GCE. The resulting electrode was examined by cyclic voltammetry (CV), scanning electron microscopy (SEM), and anodic stripping voltammetry (ASV). For the detection of As(III), the nanoPt-Fe(III)/MWCNT/GCE showed low detection limit of 10 nM (0.75 ppb) and high sensitivity of $4.76\;{\mu}A{\mu}M^{-1}$, while the World Health Organization's guideline value of arsenic for drinking water is 10 ppb. It is worth to note that the electrode presents no interference from copper ion, which is the most serious interfering species in arsenic detection.

Removal Efficiency of Arsenic by Adsorbents having Different Type of Metal Oxides

  • Min, Sang-Yoon;Kim, Byeong-Kwon;Park, Sun-Ju;Chang, Yoon-Young;Yang, Jae-Kyu
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.134-139
    • /
    • 2009
  • In this study, oxidation of As (III) as well as removal of total arsenic by adsorbents coated with single oxides or multi-oxides (Fe (III), Mn (IV), Al (III)) was investigated. In addition, multi-functional properties of adsorbents coated with multi-oxides were evaluated. Finally, application of activated carbon impregnated with Fe or Mn-oxides on the treatment of As (III) or As (V) was studied. As (V) adsorption results with adsorbents containing Fe and Al shows that adsorbents containing Fe show a greater removal of As (V) at pH 4 than at pH 7. In contrast adsorbents containing Al shows a favorable removal of As (V) at pH 7 than at pH 4. In case of iron sand, it has a negligible adsorption capacity for As (V) although it contains 217.9 g-Fe/kg-adsorbent, Oxidation result shows that manganese coated sand (MCS) has the greatest As (III) oxidation capacity among all metal oxides at pH 4. Oxidation efficiency of As (III) by IMCS (iron and manganese coated sand) was less than that by MCS. However the total removed amount of arsenic by IMCS was greater than that by MCS.

Characteristics of the TCE removal in FeO/Fe(II) System (FeO/Fe(II) 시스템에서 TCE의 제거 특성)

  • Sung, Dong Jun;Lee, Yun Mo;Choi, Won Ho;Park, Joo yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.149-152
    • /
    • 2008
  • The reaction between iron oxide and ferrous iron is known to be the adsorption of ferrous iron onto the oxide surfaces that produces Fe(II)-Fe(III) (hydr)oxides and ferrous oxide oxidized to ferric ion which is the reducing agent of the target compounds. In our investigations on DS/S using ferrous modified steel slag, the results did not follow the trends. FeO and Fe(II), the major component of steel slag, were used to investigate the degradation of TCE. Degradation did not take place for the first and suddenly degraded after awhile. Degradation of TCE in this system was unexpected because Fe(II)-Fe(III) (hydr)oxides could not be produced in absence of ferric oxide. In this study, the characteristics of FeO/Fe(II) system as a reducing agent were observed through the degradation of TCE, measuring byproducts of TCE and the concentration of Fe(II) and Fe(III). Adsorption of ferrous ion on FeO was observed and the generation of byproducts of TCE showed the degradation of TCE by reduction in the system is obvious. However it did not correspond with the typical reducing mechanisms. Future research on this system needs to be continued to find out whether new species are generated or any unknown mineral oxides are produced in the system that acted in the degradation of TCE.

Complex Formation Between Ferric Ion and Phosphoric Acid (철(III) 과 인산간의 착물형성에 관한 연구)

  • Kim Myeong Soon;Youn Soo Sohn;Chang Hong Kim
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.325-330
    • /
    • 1975
  • Complex formation between ferric ion and phosphoric acid has been studied in the wide range of the acid concentration(0${\sim}40{\%}$) by uv-visible spectroscopy and by characterization of the isolated products. The electronic spectra of Fe(III)-containing phosphoric acid solutions exhibit two visible bands at 19.2 and 24.1 kK, which are characteristic of Fe(III)-phosphate complex formation. The measurements of acid concentration dependence of the opical density of the 24.1 kK band indicates the presence of two distinct forms of Fe(Ⅲ)-phosphate complexes possibly $[Fe(H_xPO_4)]^{x+}\;and\;[Fe_2 (H_xPO_4)]^{(3+x)+}$. The 1:1 complex has been isolated for characterization, and the phosphate ion was found to be coordinated to the metal in monobasic state whereas the isolation of the dimeric species was unsuccessful.

  • PDF

Adsorption of Textile Wastewater on Sawdust (톱밥에 의한 염색폐수의 흡착처리)

  • Kim, Tak-Hyun;Park, Chul-Hwan;Kim, Sang-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.4
    • /
    • pp.439-445
    • /
    • 2008
  • Sawdust is considered one of the cheapest and abundantly available adsorbents, and it is not necessary to regenerate. The spent sawdust can be incinerated or reused as a fuel. The sawdust adsorption can be applied to the removal of color and metal cations from the wastewater. The aim of this study was to evaluate the adsorptive capacities of sawdust with respect to color, COD, SS, turbidity, metal cation from textile wastewater. Langmuir, Freundlich, BET and Sips adsorption isotherm were obtained for the sawdust adsorption of Fe(III). The effects of particle size and amount of sawdust on the adsorption of Fe(III) were also studied. COD, SS, color, turbidity and Fe(III) removal efficiencies were examined at the continuous fixed-bed adsorption test. It was showed the removal efficiencies of SS 50.0%, Fe(III) 25.0%, turbidity 79.4%, color 48.6% and COD 50.9%. In addition, the changes of surface structure between before and after adsorption were investigated through SEM analysis. It is confirmed that the waste sawdust can be successfully used as an adsorbent for wastewater treatment.