• Title/Summary/Keyword: Fe(III)/Fe(II)

Search Result 298, Processing Time 0.032 seconds

Rates of Anaerobic Carbon Mineralization and Sulfate Reduction in Association with Bioturbation in the Intertidal Mudflat of Ganghwa, Korea (강화도 남단 갯벌의 혐기성 유기물 분해능과 황산염 환원력 및 저서 동물이 이에 미치는 잠재적 영향)

  • Mok, Jin-Sook;Cho, Hye-Youn;Hyun, Jung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.38-46
    • /
    • 2005
  • This study was carried out to quantify the rates of anaerobic mineralization and sulfate reduction, and to discuss the potential effects of benthic fauna on sulfate reduction in total anaerobic carbon respiration in Ganghwa intertidal flat in Korea. Anaerobic carbon mineralization rates ranged from 26 to 85 mmol $C\;m^{-2}\;d^{-1}$, which accounted for approximately 46 tons of daily organic matter mineralization in the intertidal flat of southern part of the Ganghwa Island (approximately $90\;km^2$). Sulfate reduction ranged from 22.6 to 533.4 nmol $cm^{-3}\;d^{-1}$, and were responsible for $31{\sim}129%$ of total anaerobic carbon oxidation, which indicated that sulfate reduction was a dominant pathway for anaerobic carbon oxidation in the study area. On the other hand, the partitioning of sulfate reduction in anaerobic carbon mineralization in October decreased, whereas concentrations of Fe(II) in the pore water increased. The results implied that the re-oxidation of Fe(II) in the sediments is stimulated by macrobenthic activity, leading to an increased supply of reactive Fe(II), and thereby increasing Fe(III) reduction to depress sulfate reduction during carbon oxidation.

Reversed-Phase Liquid Chromatographic Separation of Metal Ions by Chelate Formation with 1-(2-Pyridylazo)-2-Naphthol (역상 액체크로마토그래피에 의한 1-(2-Pyridylazo)-2-Naphthol과 킬레이트를 형성하는 금속이온의 분리)

  • Kang, Sam Woo;Park, Sun Ja
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.2
    • /
    • pp.197-202
    • /
    • 1998
  • 1-(2-Pyridylazo)-2-Naphthol (PAN) has been widely used as a spectrophotometric reagent and metallochromic indicator for many metal ions. In this work, the chelate reagent of PAN was used as mobile phase additive for the separation of metal ions by reversed phase chromatography. Metal ions could be detected by monitoring the effluent at 570 nm with spectrophotometric detector. In order to investigate retention behaviors of the metal ions, the chromatograms and capacity factors were obtained as the variation of pH, ionic strength and composition of organic modifier in mobile phase. Under the obtained optimum conditions, the mixtures of Fe(III), Ni(II), Cu(II), Zn(II) and Co(II) could be separated successfully and the calibration curves under the recommended conditions showed an excellent linearity. The detection limits(S/N) were feasible at the nanogram level.

  • PDF

Optimization of chemical precipitation for phosphate removal from domestic wastewater (생활하수내 인 제거를 위한 화학적 침전의 최적화)

  • Lee, Sunkyung;Park, Munsik;Yeon, Seungjae;Park, Donghee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.663-671
    • /
    • 2016
  • Coagulation/precipitation process has been widely used for the removal of phosphate within domestic wastewater. Although Fe and Al are typical coagulants used for phosphate removal, these have some shortages such as color problem and low sedimentation velocity. In this study, both Fe and Al were used to overcome the shortages caused by using single one, and anionic polymer coagulant was additionally used to enhance sedimentation velocity of the precipitate formed. Batch experiments using a jar test were conducted with real wastewater, which was an effluent of the second sedimentation tank in domestic wastewater treatment plant. Response Surface Methodology was used to examine the responsibility of each parameter on phosphate removal as well as to optimize the dosage of the three coagulants. Economic analysis was also done on the basis of selling prices of the coagulants in the field. Phosphate removal efficiency of Fe(III) was 30% higher than those of Fe(II). Considering chemical price, optimum dosage for achieving residual phosphate concentration below 0.2 mg/L were determined to be 18.14 mg/L of Fe(III), 2.60 mg/L of Al, and 1.64 mg/L of polymer coagulant.

Polymorphic Variations of Pyrrhotite as related to Tungsten-Tin-Copper Mineralization at the Ohtani Mine, Japan (일본(日本) 대곡광산산(大谷鑛山産) Pyrrhotite의 성질(性質))

  • Kim, Moon Young;Nakamura, Takeshi
    • Economic and Environmental Geology
    • /
    • v.19 no.1
    • /
    • pp.57-66
    • /
    • 1986
  • The ore deposit of the Ohtani mine is one of representatives of plutonic tungsten-tin veins related genetically to acidic magmatism of Late Cretaceous in the Inner zone of Southwest Japan. Based on macrostructures of vein filling, three major mineralization stages are distinguished by major tectonic breaks. The constituents of ore minerals are scheelite, cassiterite, chalcopyrite, pyrrhotite, sphalerite, with small amounts of cubanite, stannite, galena, native bismuth, bismuthinite, arsenopyrite and pyrite. The relationship between the polymorphic variations of pyrrhotite and the kinds of the associated characteristic of ore mineral, in relation with hypogene mineralization, has been demonstrated. Pyrrhotite of stage I is predominantly of the hexagonal phase (Hpo>Mpo). Pyrrhotite of stage II is mainly of the monoclinic phase ($Hpo{\ll}Mpo$). Pyrrhotite of stage III is a single monoclinic phase ($Hpo{\ll}Mpo$). The compositions of the hexagonal pyrrhotite decrease in Fe content ranging from 47.44 atom % Fe in stage I to 46.88 atom % Fe in stage III.

  • PDF

Characterization of Microbial Diversity of Metal-Reducing Bacteria Enriched from Groundwater and Reduction/Biomineralization of Iron and Manganese (KURT 지하심부 지하수 내 토착 금속환원미생물의 종 다양성 및 철/망간의 환원과 생광물화작용)

  • Kim, Yumi;Oh, Jong-Min;Jung, Hea-Yeon;Lee, Seung Yeop;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.431-439
    • /
    • 2014
  • The purposes of this research were to investigate the enrichment of metal-reducing bacteria from KURT groundwater and the identification of the microbial diversity by 16S rRNA as well as to examine microbial Fe(III)/Mn(IV) reduction and to analyze morphological features of interactions between microbes and precipitates and their mineralogical composition. To cultivate metal-reducing bacteria from groundwater sampled at the KURT in S. Korea, different electron donors such as glucose, acetate, lactate, formate, pyruvate and Fe(III)-citrate as an electron accepter were added into growth media. The enriched culture was identified by 16S rRNA gene sequence analysis for the diversity of microbial species. The effect of electron donors (i.e., glucose, acetate, lactate, formate, pyruvate) and electron acceptors (i.e., akaganeite, manganese oxide) on microbial iron/manganese reduction and biomineralization were examined using the 1st enriched culture, respectively. SEM, EDX, and XRD analyses were used to determine morphological features, chemical composition of microbes and mineralogical characteristics of the iron and manganese minerals. Based on 16S rRNA gene analysis, the four species, Fusibacter, Desulfuromonas, Actinobacteria, Pseudomonas sp., from KURT groundwater were identified as anaerobic metal reducers and these microbes precipitated metals outside of cells in common. XRD and EDX analyses showed that Fe(III)-containing mineral, akaganeite (${\beta}$-FeOOH), reduced into Fe(II)/Fe(III)-containing magnetite ($Fe_3O_4$) and Mn(IV)-containing manganese oxide (${\lambda}-MnO_2$) into Mn(II)-containing rhodochrosite ($MnCO_3$) by the microbes. These results implicate that microbial metabolism and respiratory activities under anaerobic condition result in reduction and biomineralization of iron and manganese minerals. Therefore, the microbes cultivated from groundwater in KURT might play a major role to reduce various metals from highly toxic, mobile to less toxic, immobile.

Removal Phosphorus Using Iron Contactor by Intermittent Aeration Activated Sludge Process (철 접촉재를 이용한 간헐폭기식 활성슬러지 공법에 의한 인의 제거)

  • 이영신;김동민
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.4
    • /
    • pp.33-37
    • /
    • 1993
  • The problem for the removal of phosphorus increased due to reasons like eutrophication control. However its removal and operating criteria were not well developed. This study was made for enhanced removal of P by iron contactor by intermittent aeration activated sludge process. Experiment was conducted to find the effects of organic substance load and HRT, nutrient removal efficiency. When applied organic substance load and HRT, II &III reactor were good treatment efficient while come from Fe of iron contactor. Release of phophorus from II &III reactor sludge under anaerobic condition was low. As the process developed, the content of released ionized Fe from iron contactor increased. In addition, the rate of phosphorus removal became accelerating, and the removed sludge was stabilized in the existence of insoluble status.

  • PDF

Mechanochemical Synthesis of Zinc Ferrite, $ZnFe_2O_4$

  • Sawada, Yutaka;Iizumi, Kiyokata;Kuramochi, Tomokazu;Wang, Mei-Han;Sun, Li-Xian;Okada, Shigeru;Kudou, Kunio;Shishido, Toetsu;Matsushita, Jun-Ichi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.971-972
    • /
    • 2006
  • Mechanochemical synthesis of zinc ferrite, $ZnFe_2O_4$, was attempted from a powder mixture of iron (III) oxide, alpha-$Fe_2O_3$ and zinc (II) oxide, ZnO. Nanocrystalline zinc ferrite, $ZnFe_2O_4$ powders were successfully synthesized only bymilling for 30 hours. Evidence of the $ZnFe_2O_4$ formation was absent for the powders milled for 10 and 20 hours; the milling lowered the crystallinity of the starting materials. Heating after milling enhanced the formation of $ZnFe_2O_4$, crystal growth of $ZnFe_2O_4$ and the unreacted starting materials. The unreacted starting materials decreased their amounts by heating at higher temperatures.

  • PDF

A Study on Fractionation and Characterization of Water-Soluble Natural Fe-Chelates From Garbage Compost and Activated Sewage Sludge (활성오니(活性汚泥) 및 진개퇴비중(塵芥堆肥中) 수용성(水溶性) 철(鐵) 킬레이트의 분리(分離)와 특성(特性)에 관(關)한 연구(硏究))

  • Park, Nae-Joung;Lindsay, W.L.
    • Applied Biological Chemistry
    • /
    • v.18 no.4
    • /
    • pp.194-202
    • /
    • 1975
  • This study was conducted to study the properties of the water-soluble natural chelating agents from garbage compost and activated sewage sludge responsible for Fe chelation, which is closely associated with the effectiveness in correcting iron chlorosis in plant. The water-soluble fraction of these materials was fractionated by menas of Sephadex gel filtration and the fractions of Fe chehates were traced by radioactive $^{59}Fe$. The fractions were examined by ultraviolet and infrared. spectroscopy and stability constants for Fe. The water-soluble fraction from garbage compost was separated by Sephadex G-25 into approximately four fractions. Most of the added $^{59}Fe$ was associated with fraction I, which appeared at the void volume. Further fractionation by Sephadex G-50 indicated that the molecular weight of water-soluble chelating agents is in the approximate range of 5000 to 10,000. The water-soluble fraction from activated sewage sludge gave six fractions by Sephadex G-25. Most of the added $^{59}Fe$ was found in the fraction I,II, and III, The molecular weights of most chelating agents associated with $^{59}Fe$ appeared to be less than 5,000 and those of fraction I that appeared at the void volume was in the range of 5,000 to 1,000. Discrepancy between radio activity count and UV absorption indicated the heterogeneity of the fractions obtained by Sephadex gel filtration. Ultraviolet absorption spectra of all fractions separated by Sephadex G-25 and containing chelating agents showed no differences. Fraction IV and V of sewage extract showed absorption maxima and shifting similar to nucleic acid components suggesting the presence of decomposition products of nucleic acid. Similarity fraction VI contained phenolic type amino acid groups. Fraction I of compost extract contained most of the added $^{59}Fe$ and showed weak but extra definite absorption in the 1230, and $1270cm^{-1}$ region, suggesting that extra oxygen groups in polyphenolic structure were probably involved in Fe chelation. In sewage extract, fraction I,II, and III in which most of the $^{59}Fe$ was found, showed strong definite polypeptide absorption in the region of $1540cm^{-1}$ due to NH deformation and C-N stretching of amide groups in the peptidebond. These extra functional groups in fraction I, II, and III appeared to be associated with Fe chelation. The other fractions, not associated with $^{59}Fe$, still have carboxyl and hydroxyl groups, suggesting that these functional groups in these water extracts may not independently form the Fe chelates. Precipitation of ferric hydroxide precluded measuring the stability constants for Fe-chelates. However, the formation constants for Zn chelates as log K values for compost extract and sewage extract at pH 4.0 from which the strength of chelation with Fe could be presumed, were 8.23, and 9.75, respectively, indicating strong complexation with metals. The chelating capacity of compost extract containing 6.5 g organic matter per liter was 0.82 mM, and that of sewage extract containing 5.3 g per liter was 0. 64 mM.

  • PDF

Effective Methods of Fenton Oxidation for Remediation of Diesel-contaminated Soil (효과적인 펜톤산화처리법을 이용한 경유오염토양 복원에 관한 연구)

  • Lee, Eui-Sang;Kim, Ji-Young;Oh, Se-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2771-2778
    • /
    • 2009
  • This study was performed to solve the problem of the 2nd contamination and excessive treatment cost by determining proper quantity of hydrogen peroxide, iron catalyst, mixing method, and input mode that should be provided when Fenton oxidation (this is mostly applied to small contaminated areas such as service station sites) is applied to the excavated and diesel-contaminated soil. Soil artificially contaminated with 10000mg/kg of diesel was used for the experiment. In the batch test, diesel removal seemed to increase as the concentration of hydrogen peroxide increases. When iron catalyst was added, removal efficiency of diesel was much higher than the time when hydrogen peroxide was added solely. The removal efficiency showed greater when Fe(III) was added compared to Fe(II). Column experiment was executed on the basis of results of the batch test to investigate adequate reagent mixing and input methods. The highest efficiency was acquired in the case of separate input mode. Also, it was found that when inputting Fe(III) iron catalyst and separately inputting hydrogen peroxide after dividing the bundle in the column, removal efficiency was 92.8%, which was 9 times greater than that of the first method, 10.5%, when only hydrogen peroxide was added. Thus, it is expected that if the result of this research is applied to Fenton oxidation for the remediation of soil contaminated by diesel, the problem of the 2nd contamination and excessive treatment charge caused by excessive addition of hydrogen peroxide and iron catalyst could be solved.