• Title/Summary/Keyword: Faults Diagnosis

Search Result 513, Processing Time 0.024 seconds

A method to find the position of fault in a moving vehicle using microphone arrays (마이크로폰 어레이를 이용하여 차량 하부에서 발생한 결함의 위치를 찾아내는 방법)

  • Kim, Yang-Hann;Jeon, Jong-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.144-151
    • /
    • 2006
  • Sound generated from a moving vehicle often carries information on the condition of vehicle, for example, whether it has faults or not, where the fault exists. The latter is possible especially by MFAH(moving frame acoustic holography) and beamforming method. MFAH is applicable to the sound source of pure tone or narrow band noise. For the beamforming method, we have to know what kind of wave the sound source radiates, for example, plane wave or spherical wave. That is, whether the above methods are applicable depends on the characteristics of sound source. To apply these methods to the fault detection, we have to know the characteristics of wave from faults. In this research, a machine diagnosis technique based on the above holographic approaches is introduced to find the position of faults. The signal due to faults is modeled based on the fact that the faults radiate impulsive noise, and analyzed in time and frequency domain. The way how MFAH and beamforming method can be used is introduced to find the position of source.

  • PDF

Fault Diagnosis of Roll Shape Under the Speed Variation in Hot Rolling Mill

  • Lee, Chang-Woo;Kang, Hyun-Kyoo;Shin, Kee-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.9
    • /
    • pp.1410-1417
    • /
    • 2006
  • The metal processing system usually consists of various components such like motors, work rolls, backup rolls, idle rolls, sensors, etc. Even a simple fault in a single component in the system may cause a serious damage on the final product. It is therefore necessary to diagnose the faults of the components to detect and prevent system failure. Especially, the defects in a work roll are critical to the quality of strip. It is especially difficult to detect faults of a roll by using the existing frequency analysis method if the speed of the roll is changing. In this study, a new diagnosis method for roll eccentricity under the roll speed changes was developed. The new method was induced from analyzing the rolling mechanism by using rolling force models, radius-speed relationship, and measured rolling force, etc. Simulation results by using the field data show that the proposed method is very useful.

Fault diagnosis system using qualitative models and interpreters

  • Shin, S.;Lee, Seon-Ho;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.275-278
    • /
    • 1996
  • This fault diagnosis system consists of qualitative models, qualitative interpreter, and inference engine. Qualitative models are formed by analysis of the relationships between faults and behaviors of sensor trends, which are described by state transition trees. Qualitative interpreter outputs confidence factors with three qualitative quantities which represent the states of sensor trends. And then, the possible faults are detected by inference module which matches the states of trends within a window size with the qualitative models using the well-known min-max operation.

  • PDF

Intelligent Fault Diagnosis of Induction Motor Using Support Vector Machines (SVMs 을 이용한 유도전동기 지능 결항 진단)

  • Widodo, Achmad;Yang, Bo-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.401-406
    • /
    • 2006
  • This paper presents the fault diagnosis of induction motor based on support vector machine(SVMs). SVMs are well known as intelligent classifier with strong generalization ability. Application SVMs using kernel function is widely used for multi-class classification procedure. In this paper, the algorithm of SVMs will be combined with feature extraction and reduction using component analysis such as independent component analysis, principal component analysis and their kernel(KICA and KPCA). According to the result, component analysis is very useful to extract the useful features and to reduce the dimensionality of features so that the classification procedure in SVM can perform well. Moreover, this method is used to induction motor for faults detection based on vibration and current signals. The results show that this method can well classify and separate each condition of faults in induction motor based on experimental work.

  • PDF

Fault Diagnosis of a Pump by Using Vibrational Signals (진동신호를 이용한 펌프의 고장진단 연구)

  • Chung, Won-Sik;Lee, Sin-Young;Chung, Tae-Jin;Lee, Jong-Kil
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.590-595
    • /
    • 2001
  • We must maintain the maximum operation capacity for production facilities and find properly out the fault diagnosis of the possessing equipments rapidly so as to decrease a loss caused by its failure. In this paper, we performed the fundamental study which develops a system of fault for a individually using pump widely or a pump as parts of the other machines. For each normal products, artificially transformed products, and working products under critical condition, we experimented in vibration, compared and analysed. Some faults showed into characteristic vibrations and other faults did not show consistent characters.

  • PDF

A geometric approach to fault diagnosis algorithm in linear systems

  • Kim, Jee-Hong;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1216-1221
    • /
    • 1990
  • An algorithm for multiple fault diagnosis of linear dynamic systems is proposed. The algorithm is constructed by using of the geometric approach based on observation that, when the number of faulty units of the system is known, the set of faulty units can be differentiated from other sets by checking linear varieties in the measurement data space. It is further shown that the system with t number of faults can be diagnosed within (t+1) sample-time units if the input-output measurements are rich and that the algorithm can be used for diagnosis even when the number of faults is not known in advance.

  • PDF

Fault Detection and Diagnosis of a Constant Volume Air Handling Unit by a Fuzzy Algorithm (퍼지 알고리즘을 이용한 정풍량 공조기의 고장 감지 및 진단)

  • Han Doyoung;Kim Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.444-451
    • /
    • 2005
  • The fault detection and diagnosis technology may be applied in order to decrease the energy consumption and the maintenance cost of an air-conditioning system. In this study, partial faults for fans, coils, dampers, and sensors of a constant volume air handling unit were considered. A fuzzy algorithm was developed to detect and diagnose these faults. Diagnostic results by the fuzzy algorithm were compared with those by the model reference algorithm. The fuzzy algorithm showed better results in diagnostic accuracies.

The Use of Support Vector Machines for Fault Diagnosis of Induction Motors

  • Widodo, Achmad;Yang, Bo-Suk
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.46-53
    • /
    • 2006
  • This paper presents the fault diagnosis of induction motor based on support vector machine (SVMs). SVMs are well known as intelligent classifier with strong generalization ability. Application SVMs using kernel function is widely used for multi-class classification procedure. In this paper, the algorithm of SVMs will be combined with feature extraction and reduction using component analysis such as independent component analysis, principal component analysis and their kernel (KICA and KPCA). According to the result, component analysis is very useful to extract the useful features and to reduce the dimensionality of features so that the classification procedure in SVM can perform well. Moreover, this method is used to induction motor for faults detection based on vibration and current signals. The results show that this method can well classify and separate each condition of faults in induction motor based on experimental work.

  • PDF

A Monitoring Algorithm using FCM and ELM for Power Transformer (FCM과 ELM을 이용한 전력용 변압기의 모니터링 알고리즘)

  • Ji, Pyeong-Shik;Lim, Jae-Yoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.228-233
    • /
    • 2012
  • In power system, substation facilities have become too complex and larger according to an extended power system. Also, customers require the high quality of electrical power system. However, some facilities become old and often break down unexpectedly. The unexpected failure may cause a break in power system and loss of profits. Therefore it is important to prevent abrupt faults by monitoring the condition of power systems. Among the various power facilities, power transformers play an important role in the transmission and distribution systems. In this research, we develop intelligent diagnosis technique for monitoring of power transformer by FCM(Fuzzy c-means) and ELM(Extreme Learning Machine). The proposed technique make it possible to diagnosis the faults occurred in transformer. To demonstrate the validity of proposed method, various experiments are performed and their results are presented.

FPGA-based ARX-Laguerre PIO fault diagnosis in robot manipulator

  • Piltan, Farzin;Kim, Jong-Myon
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.99-112
    • /
    • 2018
  • The main contribution of this work is the design of a field programmable gate array (FPGA) based ARX-Laguerre proportional-integral observation (PIO) system for fault detection and identification (FDI) in a multi-input, multi-output (MIMO) nonlinear uncertain dynamical robot manipulators. An ARX-Laguerre method was used in this study to dynamic modeling the robot manipulator in the presence of uncertainty and disturbance. To address the challenges of robustness, fault detection, isolation, and estimation the proposed FPGA-based PI observer was applied to the ARX-Laguerre robot model. The effectiveness and accuracy of FPGA based ARX-Laguerre PIO was tested by first three degrees of the freedom PUMA robot manipulator, yielding 6.3%, 10.73%, and 4.23%, average performance improvement for three types of faults (e.g., actuator fault, sensor faults, and composite fault), respectively.