• Title/Summary/Keyword: Faulted cable

Search Result 9, Processing Time 0.029 seconds

Failure Analysis of LV URD Cable based on FMEA (FMEA에 근거한 LV URD 케이블의 고장분석)

  • Shong, Kil-Mok;Han, Woon-Ki;Kim, Young-Seok;Kim, Sun-Gu;Kwak, Hee-Ro
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.90-98
    • /
    • 2007
  • The objective of this investigation was to reveal the cause of the faulted cable(LV URD(low voltage underground) cable). For the analysis, various types or equipments such as external pattern, thermal pattern, surface structure, thermal analysis, and property distribution were deployed. The international standards and the specification provided by the manufacturer of faulted cable were examined whether it fit the standards. The summary is as follows. (1) Discovered as a factor lowering insulation performance of the faulted cable: minimum thickness of the insulation layer specified by IEC 60502-1 and IEC 60811-1-1 was not fit. (2) Infrared absorption peaks measured by FT-IR spectrometer revealed that the measurements made for the same material did not conform and it is an important basis for proving heterogeneous composition of the insulation material. (3) It was found that PVC bedding was thermally fragile and therefore long term exposure at the site could cause similar fault pattern.

The Experimental Verification and Fault Cause Analysis of Breakdown on the 6.6kV class Cable Joint (6.6kV급 케이블 중간접속부의 절연파괴 사고원인 분석과 실험 검증)

  • Kim, Young-Seok;Shong, Kil-Mok;Jung, Jin-Su
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1385_1386
    • /
    • 2009
  • In this paper, we examined the faulted cable joint through the external form analysis, material analysis, experimental verification and it's cause diagnosis system. It was not observed the voild, sharp material from the external form analysis and material variation. From the experimental verification, the thickness decrease of an insulator decreased ac breakdown strength suddenly and the breakdown traces of the insulator that was damaged by knife displayed elliptic shape. Thus, the faulted cable is assumed to accident that become dielectric breakdown by the deterioration of insulation performance that can happen when work.

  • PDF

The Properties of Breakdown and Test for Resistance to Cracking of Power Cable for PL Countermeasure (PL법 대응을 위한 전력케이블의 열 충격 및 절연파괴 특성)

  • Kim, Young-Seok;Shong, Kil-Mok;Kim, Sun-Gu
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.349-352
    • /
    • 2007
  • It is impossible to database(DB) the patterns of cable events and cause analysis of faulted cable because the product liability(PL) law have been enforced in Korea, since 2002. In additions, simulation and pattern of cable events are needed for DB system under accelerated deterioration. In this paper, we tested for resistance to nicking of cable below the 22.9kV class due to thermal stresses. This method of exam is following IEC 60811-3-1(Common test methods for insulating and sheathing materials of electric cables). First of all, set the cable in the thermal stress instrument, temperature changed from -20 degree to 120 degree. After thermal stress, we observed a surface crack of cable through microscope and carried out AC withstand voltage test.

  • PDF

Ground Fault Current Variation of 22.9kV Multi Neutral Grounded Distribution System with CD Type Superconducting Cable (22.9kV 중성점 다중접지계통에 CD형 초전도케이블을 적용한 경우의 지락전류변화)

  • Lee, Jong-Bae;Hwang, Si-Dole;Sohn, Song-Ho;Lee, Geun-Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.993-999
    • /
    • 2007
  • This paper discusses the effects of CD type superconducting cable operation in 22.9kV multi neutral grounded distribution system during L-G fault and counterplans to power system protection. In case of using the 3-phase CD-type superconducting cable, the inductance of superconducting cable system would be decreased due to the current of shield part of superconducting cable, which is opposite direction and nearly equal value with respect to main superconductor. However, when the shield circuit system is operated in shorted state, shield current decreases faulted ground current and give effects to power system protection scheme. This study examines the phenomena of single line to ground fault case in above mentioned system using the EMTDC program and discusses the right operation method of superconducting shield.

The Accident Hazard and Material Analysis of Power Cable due to Thermal Stress under PL System (PL법 환경하에서 열 충격에 따른 전력케이블의 재료분석 및 사고위험성)

  • Kim, Young-Seok;Shong, Kil-Mok;Jung, Jin-Su;Jung, Jong-Wook;Kim, Sun-Gu;Kim, Sang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.82-87
    • /
    • 2008
  • It is impossible to database(DB) the patterns of power cable events and cause analysis of faulted cable because the product liability(PL) law have been enforced in Korea, since 2002. In additions, simulation and pattern of power cable events are needed for DB system under accelerated deterioration. In this paper, we tested for resistance to cracking of cable below the 22.9kV class due to thermal stresses. This method of exam is following IEC 60811-3-1(Common test methods for insulating and sheathing materials of electric cables). From the results, The 22.9kV calss A power cable was discolored on the surface and significantly reduced in the longitudinal direction. As the thermal weight properties of A power cable was definitely varied, we are able to guess the problem of manufacture. If the cable was defect by the manufacture, the victims would be able to claim for damage in the PL system.

The Properties of Dielectric Breakdown and Thermal Stresses below 22.9[kV] Class XLPE Power Cable (22.9[kV]이하 XLPE 전력케이블의 열 충격 시험 및 절연파괴 특성)

  • Kim, Young-Seok;Shong, Kil-Mok;Kim, Sun-Gu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.54-60
    • /
    • 2008
  • It is impossible to database(DB) the patterns of power cable events and cause analysis of faulted cable because the product liability(PL) law have been enforced in Korea, since 2002. In additions, simulation and pattern of power cable events are needed for DB system under accelerated deterioration. In this paper, we tested for resistance to cracking of cable below the 22.9[kV] class due to thermal stresses. This method of exam is following IEC 60811-3-1(Common test methods for insulating and sheathing materials of electric cables). From the results, The 22.9[kV] class A power cable was discolored on the surface and significantly reduced in the longitudinal direction. As the thermal weight properties of A power cable was definitely varied, we are able to guess the problem of manufacture. If the cable was defect by the manufacture, the victims would be able to claim for damage in the PL system.

Development of outage-free installation method and equipments for underground power distribution system (지중배전선로 무정전 공법의 최적화를 위한 장비 개발)

  • Yu, K.Y.;Joo, J.M.;Lee, Y.S.;Kim, Y.M.;Kang, N.K.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.122-124
    • /
    • 2005
  • Underground distribution system is a trend due to the successive development of metropolitan area and satellite cities and the environment of the commercial and residential areas. The high quality of electricity, which is related with the minimal outage duration time due to the maintenance work for the underground distribution line, is mandatory. Hence, the construction method and tools for the outage-free maintenance construction have been required for underground distribution system. So far, all the efforts for outage-free maintenance for the underground distribution have been limited only to the survey for foreign countries situation and the theoretical provision; thus, It is required to develop the various construction method and the application tools. Differently from the aerial line, the construction of the underground cable is complicated and the insulation distance between conductor and shield should be maintained in loadmaking/breaking operation, though the apparatus connected with cable is a deadfront type. Also since the apparatus is installed above ground, by-pass of faulted area at busy area needs a variety of high technologies. Therefore, in this these, the authors introduce the development status of the loadbreak connectors, connection facilities, outage-free maintenance system for secondary side, a secondary auxiliary bushing and additional tools so that there can be more progress on this field.

  • PDF

Development and Application of Pre/Post-processor to EMTP for Sequence Impedance Analysis of Underground Transmission Cables (지중 송전선로 대칭분 임피던스 해석을 위한 EMTP 전후처리기 개발과 활용)

  • Choi, Jong-Kee;Jang, Byung-Tae;An, Yong-Ho;Choi, Sang-Kyu;Lee, Myoung-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1364-1370
    • /
    • 2014
  • Power system fault analysis has been based on symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. Obtaining accurate line impedances as possible are very important for estimating fault current magnitude and setting distance relay accurately. Especially, accurate calculation of zero sequence impedance is important because most of transmission line faults are line-to-ground faults, not balanced three-phase fault. Since KEPCO has started measuring of transmission line impedance at 2005, it has been revealed that the measured and calculated line impedances are well agreed within reasonable accuracy. In case of underground transmission lines, however, large discrepancies in zero sequence impedance were observed occasionally. Since zero sequence impedance is an important input data for distance relay to locate faulted point correctly, it is urgently required to analyze, detect and consider countermeasures to the source of these discrepancies. In this paper, development of pre/post processor to ATP (Alternative Transient Program) version of EMTP (Electro-Magnetic Transient Program) for sequence impedance calculation was described. With the developed processor ATP-cable, effects of ground resistance and ECC (Earth Continuity Conductor) on sequence impedance were analyzed.

A Study on Reliability Evaluation for Constructing Inner Grid of Offshore Wind Farm (해상풍력단지의 내부 계통망 구성을 위한 신뢰도 평가에 관한 연구)

  • Bae, In-Su;Shin, Je-Seok;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.89-95
    • /
    • 2013
  • In resent years, Offshore Wind Farm (OWF) is being actively developed. Typically, OWF has a better wind resource than onshore one, but also have a very high investment cost and maintenance cost. Furthermore, due to a difficulty of geographical access, OWF can be affected by the failure for a longer time. As the result, OWF has a higher loss cost. Therefore, a reliability evaluation should be performed more carefully at OWF planning stage. In this paper, a methodology for the reliability evaluation on inner grid is suggested. Inner grid connects wind turbines via submarine cables and transfers power to offshore substation. According to location of the faulted cable under layouts of inner grid, the transfer ability of inner grid is influenced. In order to indicate the transfer ability of inner grid, several indices are introduced such as PNDR, EEND and EENDC. To demonstrate the methodology described in this paper, diversity case studies were performed.