• Title/Summary/Keyword: Fault-Location

Search Result 472, Processing Time 0.025 seconds

Double-Circuit Transmission Lines Fault location Algorithm for Single Line-to-Ground Fault

  • Yang, Xia;Choi, Myeon-Song;Lee, Seung-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.434-440
    • /
    • 2007
  • This paper proposes a fault location algorithm for double-circuit transmission lines in the case of single line-to-ground fault. The proposed algorithm requires the voltage and current from the sending end of the transmission line. The fault distance is simply determined by solving a second order polynomial equation which is achieved directly by the analysis of the circuit. In order to testify the performance of the proposed algorithm, several other conventional approaches have been taken out to compare with it. The test results corroborate its superior effectiveness.

Two-Terminal Numerical Algorithm for Single-Phase Arcing Fault Detection and Fault Location Estimation Based on the Spectral Information

  • Kim, Hyun-Houng;Lee, Chan-Joo;Park, Jong-Bae;Shin, Joong-Rin;Jeong, Sang-Yun
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.460-467
    • /
    • 2008
  • This paper presents a new numerical algorithm for the fault location estimation and arcing fault detection when a single-phase arcing ground fault occurs on a transmission line. The proposed algorithm derived in the spectrum domain is based on the synchronized voltage and current samples measured from the PMUs(Phasor Measurement Units) installed at both ends of the transmission lines. In this paper, the algorithm uses DFT(Discrete Fourier Transform) for estimation. The algorithm uses a short data window for real-time transmission line protection. Also, from the calculated arc voltage amplitude, a decision can be made whether the fault is permanent or transient. The proposed algorithm is tested through computer simulation to show its effectiveness.

A Numerical Algorithm for Fault Location Estimation Considering Long-Transmission Line (장거리 송전선로를 고려한 사고거리추정 수치해석 알고리즘)

  • Kim, Byeong-Man;Chae, Myeong-Suk;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2139-2146
    • /
    • 2008
  • This paper presents a numerical algorithm for fault location estimation which used to data from both end of the transmission line. The proposed algorithm is also based on the synchronized voltage and current phasor measured from the PMUs(Phasor Measurement Units) in the time-domain. This paper has separated from two part of with/without shunt capacitance(short/long distance). Most fault was arc one-ground fault which is 75% over [1]. so most study focused with it. In this paper, the numerical algorithm has calculated to distance for ground fault and line-line fault. In this paper, the algorithm is given with/without shunt capacitance using II parameter line model, simple impedance model and estimated using DFT(Discrete Fourier Transform) and the LES(Least Error Squares Method). To verify the validity of the proposed algorithm, the EMTP(Electro- Magnetic Transient Program) and MATLAB did used.

New Fault Location Algorithms by Direct Analysis of Three-Phase Circuit Using Matrix Inverse Lemma for Unbalanced Distribution Power Systems

  • Park, Myeon-Song;Lee, Seung-Jae
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.79-84
    • /
    • 2003
  • Unbalanced systems, such as distribution systems, have difficulties in fault locations due to single-phase laterals and loads. This paper proposes new fault locations developed by the direct three-phase circuit analysis algorithms using matrix inverse lemma for the line-to-ground fault case and the line-to-line fault case in unbalanced systems. The fault location for balanced systems has been studied using the current distribution factor, by a conventional symmetrical transformation, but that for unbalanced systems has not been investigated due to their high complexity. The proposed algorithms overcome the limit of the conventional algorithm using the conventional symmetrical transformation, which requires the balanced system and are applicable to any power system but are particularly useful for unbalanced distribution systems. Their effectiveness has been proven through many EMTP simulations.

Fault Location Algorithm using Software Fault Tolerance (Software Fault Tolerance를 이용한 송전선로의 고장점 표정 알고리즘)

  • Jang, Yong-Won;Han, Seung-Su;Kim, Won-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.875-877
    • /
    • 2003
  • This paper use fault location algorithm for single-phase-to-ground faults on the teed circuit of a parallel transmission line that use only local end voltage and current information. When Newton-Raphson iteration method is used, the Initial value may cause error or cause not suitable result. Suggested new calculation model uses NVP methodology, which is one of the fault tolerance technology to solve this problem. EMTP simulation result has shown effectiveness of the algorithm under various conditions.

  • PDF

Application of Fault Location Method to Improve Protect-ability for Distributed Generations

  • Jang Sung-Il;Lee Duck-Su;Choi Jung-Hwan;Kang Yong-Cheol;Kang Sang-Hee;Kim Kwang-Ho;Park Yong-Up
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.137-144
    • /
    • 2006
  • This paper proposes novel protection schemes for grid-connected distributed generation (DG) units using the fault location algorithm. The grid-connected DG would be influenced by abnormal distribution line conditions. Identification of the fault location for the distribution lines at the relaying point of DG helps solve the problems of the protection relays for DG. The proposed scheme first identifies fault locations using currents and voltages measured at DG and source impedance of distribution networks. Then the actual faulted feeder is identified, applying time-current characteristic curves (TCC) of overcurrent relay (OCR). The method considering the fault location and TCC of OCR might improve the performance of the conventional relays for DG. Test results show that the method prevents the superfluous operations of protection devices by discriminating the faulted feeder, whether it is a distribution line where DG is integrated or out of the line emanated from the substation to which the DGs are connected.

A New Line to Line Fault Location Algorithm in Distribution Power Networks using 3 Phase Direct Analysis (3상회로의 직접해석에 의한 송배전계통 선간단락 사고 고장거리 계산 알고리즘)

  • Choe, Myeon-Song;Lee, Seung-Jae;Im, Seong-Il;Jin, Bo-Geon;Lee, Deok-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.9
    • /
    • pp.467-473
    • /
    • 2002
  • In this paper, a fault location algorithm is suggested for line to line faults in distribution networks. Conventional fault location algorithms use the symmetrical component transformation, a very useful tool for transmission network analysis. However, its application is restricted to balanced network only. Distribution networks are, in general, operated in unbalanced manners, therefore, conventional methods cannot be applied directly, which is the reason why there are few research results on fault location in distribution networks. Especially, the line to line fault is considered as a more difficult subject. The proposed algorithm uses direct 3-phase circuit analysis, which means it can be applied not only to balanced networks but also to unbalanced networks like distribution a network. The comparisons of simulation results between one of conventional methods and the suggested method are presented to show its effectiveness and accuracy.

A Study on Estimation Technique for Fault Location using Quadratic Interpolation in a Parallel Feeding AC Traction System (2차 보간법을 이용한 전기철도 급전계통의 고장점 산출 기법에 관한 연구)

  • Min, Myung-Hwan;An, Tae-Pung;Kwon, Sung-il;Jung, Hosung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.599-604
    • /
    • 2017
  • Nowadays reactance method is being used as a technique for fault location in parallel feeding AC traction power system. However, implementation of this method requires a large number of field tests(ground fault) which is a huge burden on the operators. This paper presents a new estimation technique using quadratic interpolation to reduce number of times for field test and improves the accuracy of fault location. To verify a new technique, we solve AT feeding circuit and model it using PSCAD/EMTDC. Finally this paper conducts a comparative analysis of usefulness between a new technique and real field data.

A Study on Selecting the Optimal Location of BTB HVDC for Reducing Fault Current in Metropolitan Regions Based on Genetic Algorithm Using Python (Python을 이용한 유전 알고리즘 기반의 수도권 고장전류 저감을 위한 BTB HVDC 최적 위치 선정 기법에 관한 연구)

  • Song, Min-Seok;Kim, Hak-Man;Lee, Byung Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1163-1171
    • /
    • 2017
  • The problem of fault current to exceed the rated capacity of a power circuit breaker can cause a serious accident to hurt the reliability of the power system. In order to solve this issue, current limiting reactors and circuit breakers with increased capacity are utilized but these solutions have some technical limitations. Back-to-back high voltage direct current(BTB HVDC) may be applied for reducing the fault current. When BTB HVDCs are installed for reduction in fault current, selecting the optimal location of the BTB HVDC without causing overload of line power becomes a key point. In this paper, we use genetic algorithm to find optimal location effectively in a short time. We propose a new methodology for determining the BTB HVDC optimal location to reduce fault current without causing overload of line power in metropolitan areas. Also, the procedure of performing the calculation of fault current and line power flow by PSS/E is carried out automatically using Python. It is shown that this optimization methodology can be applied effectively for determining the BTB HVDC optimal location to reduce fault current without causing overload of line power by a case study.

A Fault Detection and Location Algorithm Using a Time Constant for DC Railway Systems (시정수를 이용한 직류철도급전계통에서의 고장판단 및 고장점표정 알고리즘)

  • 양언필;강상희;권영진
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.10
    • /
    • pp.563-570
    • /
    • 2003
  • When a fault occurs on railway feeders it is very important to detect the fault to protect trains and facilities. Because a DC railway system has low feeder voltage, The fault current can be smaller than the current of load starting. So it is important to discriminate between the small fault current and the load starting current. The load starting current increases step by step but the fault current increases at one time. So the type of $\Delta$I/ relay(50F) was developed using the different characteristics between the load starting current and the fault current. The load starting current increases step by step so the time constant of each step is much smaller than that of the fault current. First, to detect faults in DC railway systems, an algorithm using the time constant calculated by the method of least squares is presented in this paper. If a fault occurs on DC railway systems it is necessary to find a fault location to repair the faulted system as soon as possible. The second aim of the paper is to calculate the accurate fault location using Kirchhoff's voltage law.